检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。
否 String 存储卷的名称。 mount_path 是 String 存储卷在容器中的挂载路径。如:/tmp。请不要挂载在系统目录下,如“/”、“/var/run”等,会导致容器异常。建议挂载在空目录下,若目录不为空,请确保目录下无影响容器启动的文件,否则文件会被替换,导致容器启动异常,工作负载创建失败。
系统;还可以在Notebook异常时查看实例的事件定位等,具体参见管理Notebook实例。 ModelArts CLI,集成在ModelArts开发环境Notebook中,用于连接ModelArts服务并在ModelArts资源上执行管理命令。ma-cli支持用户在ModelArts
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练? ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env
拒绝”。 下架模型 AI Gallery中已上架的资产支持下架操作。 在AI Gallery首页,选择右上角“我的Gallery”。 在“我的资产”下,查看已上架的资产。 单击资产名称,进入资产详情页。 在资产详情页,单击“下架”,在弹窗中单击“确定”。即可将资产下架。 删除模型
DevServer或ModelArts Standard专属资源池的资源: 使用Ascend Snt9B单机单卡规格。 推荐使用“西南-贵阳一”Region上的昇腾资源。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 插件代码包
或SFS路径,单击“确定”。选择此路径后,会自动同步在“高级配置>中转目录”,也可单击“稍后决定”直接跳过。 线下开发:代码在本地,将本地代码传到OBS,然后通过OBS传至云上或直接使用SFS盘存储的代码。 线上开发:代码在云上,通过SSH连接容器。 图3 选择开发场景 图4 选择训练作业代码存储位置
添加Remote-SSH插件 在本地的VS Code开发环境中,单击左侧列表的Extensions图标选项,在搜索框中输入SSH,单击Remote-SSH插件的install按钮,完成插件安装。 图2 添加Remote-SSH插件 Step2 配置SSH 在本地的VS Code开发环境中,单击左侧Remote
息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数,用来确认对应卡数已经挂载 npu-smi info
息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数,用来确认对应卡数已经挂载 npu-smi info
数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。
数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。
处要勾选ModelArts FullAccess,请谨慎配置。 配置OBS使用权限。搜索OBS,勾选“OBS Administrator”。ModelArts训练作业中需要依赖OBS作为数据中转站,需要配置OBS的使用权限。 配置SWR使用权限。搜索SWR,勾选“SWR Full
训练网络迁移总结 确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。 理解GPU和NPU的构造以及运行的差别,有助于在迁移过程中分析问题并发挥NPU的
它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。
RANK_SIZE:根据RTF中device的数目设置该值,例如“4 * snt9b”,则该值即为4。 当需要启动文件仍然在逻辑上仅运行1次时,则可以在启动文件中判断“ASCEND_DEVICE_ID”的值,当值为“0”则执行逻辑,当值为非0则直接退出。 Ascend-Powe
准备训练数据和代码文件,上传到JupyterLab中。具体参见上传本地文件至JupyterLab。 图4 文件上传按钮 在左侧导航双击打开上传的代码文件,在JupyterLab中编写代码文件,并运行调试。有关JupyterLab的使用具体参见JupyterLab常用功能介绍。 如果您的代码文件是
前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucket_name>llm_tra
cifar10/" base_local_path = "/home/ma-user/work/cifar10/" # 形式1,数据在OBS上,且是一个压缩文件 obs_path = os.path.join(base_bucket_path, "dataset-zip/dataset