检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6
选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的
选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在Notebook中创建的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的
${dockerfile_image_name} 进行表示。 在ECS中Docker登录。 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图5 复制登录指令 修改并上传镜像。 在ECS服务器中输入登录指令后,使用下列
Notebook中选择自定义镜像与规格 云硬盘EVS是Notebook开发环境内存的存储硬盘,作为持久化存储挂载在/home/ma-user/work目录下,该目录下的内容在实例停止后会被保留。可以自定义磁盘空间,如果需要存储数据集、模型等大型文件,建议申请规格300GB+。存储支持在线按需扩容。
sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools
A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
日志提示“Please upgrade numpy to >= xxx to use this pandas version” 问题现象 在安装其他包的时候,有依赖冲突,对numpy库有其他要求,但是发现numpy卸载不了。出现如下类似错误: your numpy version
RANK_TABLE_FILE文件。当使用预置框架创建训练作业时,在训练过程中预置框架会自动解析Ascend HCCL RANK_TABLE_FILE文件,当使用自定义镜像创建训练作业时,就要适配训练代码使得训练过程中在代码里读取解析Ascend HCCL RANK_TABLE_FILE文件。
在ModelArts Standard使用run.sh脚本实现OBS和训练容器间的数据传输 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数,用来确认对应卡数已经挂载 npu-smi info
作。 停止弹性节点Server:单击“停止”,在弹出的确认对话框中,确认信息无误,然后单击“确定”。只有处于“运行中/停止失败”状态的弹性节点Server可以执行停止操作。 停止服务器为“强制关机”方式,会中断您的业务,请确保服务器上的文件已保存。 父主题: Lite Server资源管理
模型软件包结构说明 AscendCloud-6.3.912代码包中AscendCloud-LLM代码包结构介绍如下,训练脚本以分类的方式集中在scripts_modellink文件夹中: |——AscendCloud-LLM |──llm_train
A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
练作业? 安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts Standard的训练作业会读取存储在OBS服务的数据,或者输出训练结果至OBS服务指定路径,输入和输出数据需要配置2个地方:
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
动完成。 在Notebook列表,单击实例名称,进入实例详情页,查看Notebook实例配置信息。 在Notebook中打开Terminal,输入启动命令调试代码。 # 建立数据集软链接 # ln -s /home/ma-user/work/${coco数据集在SFS上的路径} /home/ma-user/coco