检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
“多轮问题”,可以将同一个角色的对话采用某个分隔符拼接到一个字符串中。例如: 原始对话示例: A:xxx号话务员为您服务! A:先生您好,有什么可以帮助您的? B:你好,是这样的 B:我家里上不了网了 B:网连不上 A:先生,您家的网络无法连接是吗 A:请问您尝试重新插拔网线吗?
包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式的区别如下: 包年/包月计费模式:包年/包月的计费模式是一种预付费方式,按订单的购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服
一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法
流经中国11个省市自治区和两个特别行政区,最终注入东海。\n长江中典型的鱼类有:鲢鱼、鳙鱼、草鱼、鲤鱼等。" //第一轮答案 }, { "content": "途径的省份列2个,并说明有哪些人文风景" //第二轮问题 },
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实
评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
计费FAQ 包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
1),数值越高质量越好,评分>0.05可认为是视频基础质量较高的视频。 美学评分 从内容(吸引人,清晰度)、构图(目标物位置良好)、颜色(有活力,令人愉悦)、光线(光线明显有对比度)、轨迹(连续、稳定)等维度评价视频美感得分。分值范围(0, 1),数值越高美感越好,评分>0.95可视为视频基础质量较高的视频。
认证鉴权失败,请参考《API文档》认证鉴权章节重新进行认证。 PANGU.0012 auth info missing. 缺少身份验证信息。 请检查调用API时是否有传入认证鉴权信息。 PANGU.0031 Inner service exception. 服务内部异常。 请联系服务技术支持协助解决。 PANGU
估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。 科学计算大模型选择建议 科学计算大模型支持训练的模型类型有:全球中期天气要素模型、降水模型、区域中期海洋智能预测模型。 全球中期天气要素预测模型、降水模型选择建议: 科学计算大模型的全球中期天气要素
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
用户提出的问题,作为运行工作流的输入,与工作流开始节点输入参数对应。 plugin_configs 否 List<PluginConfig> 插件配置,当工作流有配置用户自定义插件节点时,可能需要配置鉴权信息等,具体结构定义详见表4。 表4 PluginConfig参数 参数 是否必选 参数类型 描述
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 父主题: 编排与调用工作流
通过这些数据加工操作,平台能够有效清理噪声数据、标准化数据格式,并优化数据集的整体质量。数据加工不仅仅是简单的数据处理,它还会根据数据类型和业务场景进行有针对性的优化,从而为模型训练提供高质量的输入,提升模型的表现。 数据加工意义 数据加工在大模型开发中具有至关重要的作用,具体体现在以下几个方面:
理。 Pangu-AI4S-Weather-Precip_6h-3.0.0 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,用于降水预测,支持1个实例部署推理。 Pangu-AI4S-Weather_1h-20241030 2024年10月发布的版本,用于天
从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技