检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。
model_name> <exp_name> --master_addr <master_addr> --num_nodes <nodes> --rank <rank> --save_steps=5 --max_steps 100 <cfgs_yaml_file>:性能或精度测试配置的
需要用户自己准备测试图片。
--kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此
--kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此
--kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此
指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id String 样本ID。
--kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此
接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能
--kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此
--kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此
接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能
接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能
接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能
数据集文件有以下限制: 如果您使用2u8g规格,测试建议数据集文件应小于10MB。当文件大小符合限制要求,如果存在极端的数据规模(行数列数之积)时,仍可能会导致训练失败,建议的数据规模低于10000。 如果您使用8u32g规格,测试建议数据集文件应小于100MB。
接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能
推理请求测试 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见启动在线推理服务。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。
部署模型 模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一个满意的模型之后,需要将其应用到正式的实际数据或新产生数据中,进行预测、评价、或以可视化和报表的形式把数据中的高价值信息以精辟易懂的形式提供给决策人员,帮助其制定更加正确的商业策略。
接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能
精度性能检查工具 Benchmark精度检查工具,可以转换模型后执行推理前,使用其对MindSpore Lite模型进行基准测试,它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。