内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • vue快速学习01、环境与常用属性标签

    为当前遍历元素提供别名(可以自己随便起名字) 。v-for优先级别高于v-if之类其他指令 7.v-text 给一个便签加了v-text 会覆盖标签内部原先内容 如下面的例子 哈哈哈不会显示 8.v-bind 指令会将普通属性值变为表达值,动态表达式。 9.v-on 绑定事件。 10.v-model

    作者: 红目香薰
    发表时间: 2022-06-26 12:57:18
    272
    0
  • Maven标签简单总结

    本文中将对pom.xml文件中各个标签简单总结。2.pom.xml文件中各个标签作用pom.xml为我们提供了很多标签来进行标识和构建我们所需要各个依赖等等功能。groupId:项目组织唯一标识符,即maven将项目打包到本地仓库标识;artifactId:项目唯一

    作者: 多米诺的古牌
    21
    1
  • 数据集中excel.CSV文件标签如何调用呢

    【功能模块】【操作步骤&问题现象】1、2、【截图信息】【日志信息】(可选,上传日志内容或者附件)

    作者: py菜菜子torch
    1055
    2
  • Mybatis学习笔记(三)动态SQL标签详解

    index="":索引 如果遍历是一个list: index:指定变量保存了当前索引 item:保存当前便利元素值 如果遍历是一个map: index:指定变量就是保存了当前遍历元素key item:就是保存当前遍历元素值 collection=""

    作者: Code皮皮虾
    发表时间: 2021-08-25 13:55:16
    1755
    0
  • 深度学习之基于梯度学习

    我们到目前为止看到线性模型和神经网络最大区别,在于神经网络非线性导致大多数我们感兴趣损失函数都成为了非凸。这意味着神经网络训练通常使用迭代、基于梯度优化,仅仅使得代价函数达到一个非常小值;而不是像用于训练线性回归模型线性方程求解器,或者用于训练逻辑回归或SVM凸优化算

    作者: 小强鼓掌
    833
    2
  • RFID射频识别标签分类

    有源RFID)标签回传信号时,要借由其天线阻抗作信号切换,才能产生0与1数字变化。重要是,为了有最好回传效率,天线阻抗必须设计在「开路与短路」,这样会使信号完全反射,不会被标签IC接收,半被动式标签设计就是为了解决这样问题。半被动式RFID标签,规格类似于被动

    作者: 加油O幸福
    1199
    4
  • 机器学习深度学习

    Learning,DL)属于机器学习子类。它灵感来源于人类大脑工作方式,是利用深度神经网络来解决特征表达一种学习过程。深度神经网络本身并非是一个全新概念,可理解为包含多个隐含层神经网络结构。为了提高深层神经网络训练效果,人们对神经元连接方法以及激活函数等方面做出了

    作者: QGS
    678
    2
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习一个**子集**, 相比其他学习方法, 使用了更多参数、模型也更复杂, 从而使得模型对数据理解更加深人, 也更加智能。 传统机器学习是分步骤来进行, 每一步最优解不一定带来结果的最优解;

    作者: 黄生
    348
    1
  • 机器学习深度学习

    有趣是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名热潮.所谓深度学习,狭义地说就是 “很多层 " 神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者要求较高

    作者: ypr189
    731
    1
  • 深度学习应用开发学习

    还介绍了神经元模型起源和全连接层概念,以及ReLU等激活函数作用。深度学习核心是构建多层神经网络,而卷积神经网络(CNN)发展,尤其是AlexNet在2012年突破,让我对深度学习强大能力有了更深认识。在学习过程中,我也了解到了不同深度学习开发框架,包括The

    作者: 黄生
    22
    0
  • 深度学习之监督学习算法

    结构化输出问题称为监督学习。支持其他任务密度估计通常被称为无监督学习学习范式其他变种也是有可能。例如,半监督学习中,一些样本有监督目标,但其他没有。在多实例学习中,样本整个集合被标记为含有或者不含有该类样本,但是集合中单独样本是没有标记

    作者: 小强鼓掌
    865
    2
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋深度学习研究领域)中,该模型规模正在扩大。最新gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习未来会更大吗?通常情况下,gpt-3是非常有说服力,但它在过去一再表明,“成功

    作者: 初学者7000
    636
    1
  • 深度学习学习

    个相当高代价值。通常,就总训练时间和最终代价值而言,最优初始学习效果会好于大约迭代 100 次左右后最佳效果。因此,通常最好是检测最早几轮迭代,选择一个比在效果上表现最佳学习率更大学习率,但又不能太大导致严重震荡。

    作者: 小强鼓掌
    455
    2
  • AI、机器学习深度学习关系

    作者: andyleung
    1560
    1
  • 查询共享标签

    查询共享标签 功能介绍 查询指定共享所有标签信息。 URI GET /v2/{project_id}/sfs/{share_id}/tags 参数说明

  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同模型,从训练集有替换采样构造k 个不同数据集,然后在训练集 i 上训练模型 i。Dropout目标是在指数级数量神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量学习算法和较小步长,如梯度下降

    作者: 小强鼓掌
    1254
    2
  • 深度学习学习 XOR

    1。其余情况下返回值为 0。XOR 函数提供了我们想要学习目标函数 y = f∗(x)。我们模型给出了一个函数 y = f(x; θ)并且我们学习算法会不断调整参数 θ 来使得 f 尽可能接近 f∗。       在这个简单例子中,我们不会关心统计泛化。我们希望网络在这四个点X = {[0, 0]⊤

    作者: 小强鼓掌
    951
    3
  • 深度学习应用开发》学习笔记-32

    这里谈到了独热编码one-hot,独热编码是用来表示标签数据。前面已经知道了,标签数据很简单,就是表示0-9范围内一个数字。 说实话独热编码有什么用处,真的还没有理解。还有什么欧式空间概念啊,都很陌生。 看看代码吧。 ```python #独热编码示例。 x=[3,4] tf

    作者: 黄生
    1141
    3