内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 基于华为云ModelArts深度学习算法的语音识别实践【华为云至简致远】

    Model.zip') 至此基于深度学习算法的语音识别实践全部完成,整个流程下来体验还是很不错的! 总结 整个流程用到了很多的华为云服务,例如OBS和ModelArts的NoteBook,功能非常强大,体验感很好,对深度学习算法的语音识别有了一定的了解,也对整个实践的过程有了

    作者: 运气男孩
    发表时间: 2022-05-29 15:28:07
    3434
    4
  • PyTorch深度学习技术生态

    runtimeONNX Runtime是一种跨平台深度学习训练和推理机加速器,与深度学习框架,可以兼容TensorFlow、Keras和PyTorch等多种深度学习框架。ONNX (Open Neural Network Exchange) 是一种用于表示深度学习模型的开放格式,ONNX定义了一组

    作者: 可爱又积极
    1292
    0
  • 机器学习深度学习简介

    深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习的一个分支领域,其源于人工 神经网络的研究。 深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial

    作者: 南蓬幽
    发表时间: 2022-06-28 07:19:06
    363
    0
  • 深度学习和层级结构

    语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • [深度学习]测距

    系列内容深度学习CNN 文章目录 ADAS摄像头成像需具备的两大特点单目镜头的测距原理双目镜头的测距原理 ADAS摄像头成像需具备的两大特点 是要看得足够远 看的越远就能有更加充裕的时间做出判断和反应,从而 避免或者降低事故发生造成的损失。 是要求高动态

    作者: 内核笔记
    发表时间: 2021-06-08 15:51:49
    1409
    0
  • 深度学习笔记之理解

            我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习的模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他

    作者: 小强鼓掌
    826
    2
  • 深度学习与图像识别:原理与实践》—2.3.7 数据类型转换

    2.3.7 数据类型转换Numpy ndarray数据类型可以通过参数dtype进行设定,而且还可以使用参数astype来转换类型,在处理文件时该参数会很实用。注意,astype调用会返回一个新的数组,也就是原始数据的备份。比如,将String转换成float。示例代码如下:vector

    作者: 华章计算机
    发表时间: 2019-07-24 20:23:02
    2900
    0
  • 深度学习之图像识别:核心技术与案例实战》 ——2.1.2 TensorFlow简介

    2.1.2 TensorFlow简介  TensorFlow是Google brain推出的开源机器学习库,与Caffe一样,主要用于深度学习的相关任务。与Caffe相比,TensorFlow的安装简单很多,一个pip命令就可以解决,新手也不会误入各种“坑”。  TensorFl

    作者: 华章计算机
    发表时间: 2020-02-23 11:58:40
    5769
    0
  • 深度学习之经验E

    什么品种,其**有三个不同的品种。        无监督学习算法(unsupervised learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式

    作者: 小强鼓掌
    1060
    4
  • 深度学习之正则化

    机器学习中的一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好的算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。我们将在后文看到,深度学习工作者可以使用许多不同形式的正则化策略。事实上,开发更有效的正则化

    作者: 小强鼓掌
    527
    0
  • 华为云API入门学习赛-AI人脸识别

  • 深度学习入门》笔记 - 26

    欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待

    作者: 黄生
    49
    2
  • 适合新手的深度学习综述(6)--深度生成模型

    进行文档处理的深度生成模型。6.3 深度信念网络深度信念网络 (Deep Belief Networks, DBN) 是具有多个潜在二元或真实变量层的生成模型。Ranzato 等人 (2011) 利用深度信念网络 (deep Belief Network, DBN) 建立了深度生成模型进行图像识别。6

    作者: @Wu
    155
    1
  • 【AI-OCR】自定义扩展插件aiverifyinput(输入型验证码、健康码颜色识别、抱杆识别

    证码、健康码颜色识别、表格图片识别cid:link_0---------------------------------------------1. 导入后,在studio中的控件界面,显示见图1;图12. 控件帮忙界面见图2;图23. 属性界面见图3,图4。(识别模式有三种,输

    作者: 怪咖Creatorchf
    967
    0
  • 深度学习神经网络

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: 运气男孩
    675
    2
  • 深度学习之经验风险

    机器学习算法的目标是降低式 (8.2) 所示的期望泛化误差。这个数据量被称为风险(risk)。在这里,我们强调该期望取自真实的潜在分布 pdata。如果我们知道了真实分布 pdata(x, y),那么最小化风险变成了一个可以被优化算法解决的优化问题。然而,我们遇到的机器学习问题,通常是不知道

    作者: 小强鼓掌
    628
    2
  • 深度学习之图像识别核心技术与案例实战》—2.1.2 TensorFlow简介

    2.1.2 TensorFlow简介  TensorFlow是Google brain推出的开源机器学习库,与Caffe一样,主要用于深度学习的相关任务。与Caffe相比,TensorFlow的安装简单很多,一个pip命令就可以解决,新手也不会误入各种“坑”。  TensorFl

    作者: 华章计算机
    发表时间: 2019-06-01 23:40:04
    6192
    0
  • 深度学习之经验E

    learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习任务,例如聚类,将数据集分成相似样本的集合。

    作者: 小强鼓掌
    1164
    3
  • 学习笔记-如何提升深度学习性能?

    特征选择 f. 重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标

    作者: RabbitCloud
    632
    1
  • 深度学习训练过程

    一步类似神经网络的随机初始化初值过程,由于第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果。所以深度学习的良好效果在很大程度上归功于第一步的特征学习的过程。

    作者: QGS
    1054
    3