内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 【转载】传统机器学习深度学习

    作者: andyleung
    1036
    5
  • 深度学习应用开发》学习笔记-32

    这里谈到了独热编码one-hot,独热编码是用来表示标签数据的。前面已经知道了,标签数据很简单,就是表示0-9范围内的一个数字。 说实话独热编码有什么用处,真的还没有理解。还有什么欧式空间的概念啊,都很陌生。 看看代码吧。 ```python #独热编码示例。 x=[3,4] tf

    作者: 黄生
    1141
    3
  • 深度学习应用开发》学习笔记-27

    可视化还是比较重要的,因为数据能在图形上看到,会更直观,更符合人的认知思维。 这里先来展示一下loss的可视化。 用matplot将列表值画出来,调用非常简单 plt.plot(loss_list) 横坐标是列表中的索引,纵坐标是列表值,也就是loss值。 可以看到,曲线在收敛了

    作者: 黄生
    827
    2
  • 深度学习卷积操作

    卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。

    作者: 我的老天鹅
    630
    8
  • 深度学习之Dropout

    Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个

    作者: 小强鼓掌
    1024
    2
  • 深度学习之推断

    在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好

    作者: 小强鼓掌
    427
    4
  • 《MXNet深度学习实战》—1.2 深度学习框架

    主要通过深度学习框架MXNet来介绍如何实战深度学习算法,该框架融合了命令式编程和符号式编程,在灵活和高效之间取得了非常好的平衡。正如前文所述,各深度学习框架之间有很多相似性,当你深入了解其中一种深度学习框架之后基本上就能举一反三,因此如果你现在还在犹豫学习哪个深度学习框架,那么

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1038
    2
  • 深度学习深度模型中的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    338
    1
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4077
    2
  • 深度学习之设计矩阵

    . , x(m)}。这种表示方式并非意味着样本向量 x(i) 和 x(j) 有相同的大小。在监督学习中,样本包含一个标签或目标和一组特征。例如,我们希望使用学习算法从照片中识别物体。我们需要明确哪些物体会出现在每张照片中。我们或许会用数字编码表示,如 0 表示人,1 表示车,2

    作者: 小强鼓掌
    1663
    1
  • 深度学习应用开发》学习笔记-20

    落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等

    作者: 黄生
    934
    3
  • 深度学习应用开发》学习笔记-23

    从人的角度来看,12个特征比1个特征要复杂了很多, 但对计算机来说,无所谓。 在tf里,12元的线性回归方程的实现,比1元的线性方程的实现,代码上也只是多了一点点复杂度而已。 这就是计算机的优势。 只是最后训练的结果,为什么都是nan,像老师说的,脸都黑了哦~ 这次先到这里,请听下回分解~

    作者: 黄生
    1471
    4
  • 深度学习应用开发》学习笔记-28

    这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的

    作者: 黄生
    837
    3
  • AI、机器学习深度学习的关系

    作者: andyleung
    1560
    1
  • 机器学习深度学习的区别是什么?

    深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 深度学习与图像识别:原理与实践》—3.2.2 图像预处理

    收敛。常用的图像预处理操作包括归一化、灰度变换、滤波变换以及各种形态学变换等,随着深度学习技术的发展,一些预处理方式已经融合到深度学习模型中,由于本书的重点放在深度学习的讲解上,因此这里只重点讲一下归一化。归一化可用于保证所有维度上的数据都在一个变化幅度上。比如,在预测房价的例子

    作者: 华章计算机
    发表时间: 2019-07-24 20:55:49
    3594
    0
  • 机器学习深度学习的未来趋势

    机器学习深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 智慧城市管理:基于视觉识别引擎和深度学习的安全保障数字化

    智慧城市管理:基于视觉识别引擎和深度学习的安全保障数字化 介绍 智慧城市管理利用视觉识别引擎和深度学习技术,实现城市管理的智能化和数字化。通过高效的图像处理和分析,能够实时监控城市中的各种事件,如交通拥堵、违法停车、垃圾堆积等,从而提升城市管理的效率和安全性。 应用使用场景

    作者: 鱼弦
    发表时间: 2024-08-30 09:17:05
    165
    0
  • 深度学习之流形假设

    图像中,我们当然会认为有很多可能的变换允许我们描绘出图片空间的流形:我们可以逐渐变暗或变亮光泽,逐步移动或旋转图中对象,逐渐改变对象表面的颜色,等等。在大多数应用中很有可能会涉及多个流形。例如,人脸图像的流形不太可能连接到猫脸图像的流形。

    作者: 小强鼓掌
    1142
    1