内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习笔记之矩阵

            矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定。我们通常会赋予矩阵粗体的大写变量名称,比如A。如果一个实数矩阵高度为m,宽度为n,那么我们说A ∈ R m*n。我们在表示矩阵中的元素时,通常使用其名称以不加粗的斜体形式,索引用逗号间隔。比如,A1;1 表示A

    作者: 小强鼓掌
    730
    2
  • 深度学习入门》笔记 - 03

    接下来是概率论的一些基本的概念。 `随机变量`就是一个取值不确定的变量。 这个在工作生活中应用的实在是太广泛了。比如老板问你这件事情明天能不能搞完?一般情况下,你的回答可能就是一个随机变量。 随机变量可以分为两种类型:连续型和离散型。 `随机变量的分布`用来描述随机变量出现某种结果的可能性。可以用一些分布函数来表示。

    作者: 黄生
    31
    0
  • 深度学习入门》笔记 - 19

    如果没有激活函数,神经网络会变成什么呢? 答案是如果没有激活函数,那么无论神经网络的结构有多复杂,它都将退化为一个线性模型。现实的回归问题或者分类问题的决策边界通常都是复杂且非线性的。这要求模型具有产生复杂的非线性决策边界的能力,在这一点上激活函数在神经网络中扮演了非常重要的角色

    作者: 黄生
    35
    1
  • 深度学习入门》笔记 - 06

    下面是一个简单的例子来介绍线性回归模型。 数据是在多个市场的3个不同渠道的广告投入以及商品销量。 这个模型的意义也就很明白了,那就是找出在这3个不同渠道广告投入与最终的商品销量之间的关系。 先把数据可视化: ```python %config InlineBackend.figure_format='retina'

    作者: 黄生
    46
    2
  • 深度学习入门》笔记 - 23

    在实际中训练误差常常偏小, 不是模型真实误差的好的估计值。这是因为如果考试题目是我们做过的作业题,那么我们更容易得高分。所以我们要有一些测试数据是不要参加模型训练的,需要搁置在一旁,直到模型完全建立好,再用来计算模型的测试误差。模型的预测效果较差,经常是由于两类问题导致的。那就是

    作者: 黄生
    30
    2
  • 深度学习数据收集

    深度学习需要大量的数据集,但是现实是只有零星的数据,大家有什么收集数据的经验和经历,还有什么收集数据的好办法

    作者: 初学者7000
    745
    3
  • 深度学习库 JAX

        JAX是一个似乎同时具备Pytorch和Tensorflow优势的深度学习框架。 JAX 是 Google Research 开发的机器学习库,被称为“在 GPU/TPU上运行的具有自动微分功能的Numpy”,该库的核心是类似 Numpy 的向量和矩阵运算。我个人认为,与

    作者: QGS
    7165
    3
  • PyTorch深度学习技术生态

    runtimeONNX Runtime是一种跨平台深度学习训练和推理机加速器,与深度学习框架,可以兼容TensorFlow、Keras和PyTorch等多种深度学习框架。ONNX (Open Neural Network Exchange) 是一种用于表示深度学习模型的开放格式,ONNX定义了一组

    作者: 可爱又积极
    1290
    0
  • 深度学习=炼金术?

    深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用和待解决的问题;可解释AI的研究方向和进展。

    主讲人:华为MindSpore首席科学家,陈雷
    直播时间:2020/03/27 周五 14:00 - 15:00
  • 深度学习深度模型中的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    338
    1
  • 走近深度学习 认识MoXing

    深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。

  • 深度学习和机器学习的区别

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: 运气男孩
    685
    2
  • 什么是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: Amber
    11520
    6
  • 深度学习之动量

    虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian

    作者: 小强鼓掌
    530
    3
  • 深度学习笔记》的笔记(二)

    大脑。1956年,FrankRosenblatt发明了最早的神经网络-权重加权感知机Perceptron,它可以通过权值调整输出,模拟人类学习过程。1960年,MinskyandPapert的“Perceptrons”认为此类神经网络有许多限制(如无法解决复杂分类任务和把线性不可

    作者: 黄生
    48
    3
  • 学习深度学习是否要先学习机器学习

    学习深度学习是否要先学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5980
    23
  • 深度学习之PCA

    确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。

    作者: 小强鼓掌
    541
    1
  • 深度学习笔记之度量模型深度的方式(二)

           另一种是在深度概率模型中使用的方法,它不是将计算图的深度视为模型深度,而是将描述概念彼此如何关联的图的深度视为模型深度。在这种情况下,计算每个概念表示的计算流程图的深度 可能比概念本身的图更深。这是因为系统对较简单概念的理解在给出更复杂概念的信息后可以进一步精细化。

    作者: 小强鼓掌
    629
    2
  • 深度学习-语义分割

    本质上即为每个类别创建一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每

    作者: @Wu
    642
    0
  • 深度学习

    深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0