已找到以下 10000 条记录
  • 深度学习入门》笔记 - 28

    线性回归模型相当于下面的简单神经网络模型,它没有隐藏层、输出层只有1个节点,激活函数是线性函数。使用 tf.keras.models.Sequential()构建模型使用 model.compile() 设置优化方法、损失函数、评价指标 (损失函数的值即 训练误差;评价指标的值即

    作者: 黄生
    33
    5
  • 深度学习入门》笔记 - 04

    然后就是Python的介绍。包括常见的数据类型,基本算术运算,比较和布尔运算,如何载入额外的模块和包。 基本数据结构有列表、元组、字典和集合。控制结构,内建函数和自定义函数。 然后介绍numpy库,他可以实现快速的算数运算,特别是矩阵运算,运算内部是通过C语言实现的,所以比较快。

    作者: 黄生
    41
    1
  • 深度学习入门》笔记 - 17

    正向传播(Forward Propagation FP)算法指输入值通过神经网络得到输出值的方法。正向传播算法的计算图如下:$sigma$表示sigmoid函数,也就是激活函数。包含损失函数的计算图如下:得到$l_2$,通过$l$计算损失函数L,其中$l$表示求解损失函数的运算。

    作者: 黄生
    35
    3
  • 深度学习入门》笔记 - 22

    神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate

    作者: 黄生
    38
    3
  • 深度学习入门》笔记 - 24

    解决欠拟合问题的方法比较简单,增加模型复杂度就可以了。常见的方法是增加隐藏层的数量或者增加隐藏层的节点数,或者二者同时增加。如果训练误差持续下降,接近于0。而测试误差在下降后变得平稳,甚至略有上升。训练误差和测试误差的差距较大。这就是典型的过拟合情况。在建立神经网络模型的初始阶段

    作者: 黄生
    38
    2
  • 深度学习入门》笔记 - 25

    L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,

    作者: 黄生
    20
    1
  • 深度学习入门》笔记 - 15

    ```python #定义sigmoid函数 def sigmoid(input): return 1.0/(1+np.exp(-input)) #通过随机梯度下降法估计参数 def logit_model(x,y,w,b,lr=0.1): for iter in range(60):

    作者: 黄生
    213
    2
  • 深度学习笔记之表示学习

    解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为

    作者: 小强鼓掌
    856
    1
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    深度学习是支持人工智能发展的核心技术,云服务则是深度学生的主要业务之一。深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络

    作者: QGS
    946
    0
  • 深度学习模型结构

    目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: 运气男孩
    1146
    2
  • 深度学习模型结构

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: QGS
    646
    2
  • 学习笔记-如何提升深度学习性能?

    特征选择 f. 重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标

    作者: RabbitCloud
    632
    1
  • 深度学习之噪声

    ϵ 的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化的主要目的是改善优化,但噪声具有正则化的效果,有时没必要再使用Dropout。

    作者: 小强鼓掌
    1045
    3
  • 深度学习之过拟合

    化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。

    作者: 小强鼓掌
    335
    1
  • 深度学习的应用

    计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    657
    1
  • 深度学习的应用

    计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    1525
    2
  • 深度学习VGG网络

    为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网

    作者: 我的老天鹅
    579
    16
  • 深度学习笔记之矩阵

            矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定。我们通常会赋予矩阵粗体的大写变量名称,比如A。如果一个实数矩阵高度为m,宽度为n,那么我们说A ∈ R m*n。我们在表示矩阵中的元素时,通常使用其名称以不加粗的斜体形式,索引用逗号间隔。比如,A1;1 表示A

    作者: 小强鼓掌
    730
    2
  • 深度学习入门》笔记 - 19

    如果没有激活函数,神经网络会变成什么呢? 答案是如果没有激活函数,那么无论神经网络的结构有多复杂,它都将退化为一个线性模型。现实的回归问题或者分类问题的决策边界通常都是复杂且非线性的。这要求模型具有产生复杂的非线性决策边界的能力,在这一点上激活函数在神经网络中扮演了非常重要的角色

    作者: 黄生
    35
    1
  • 深度学习入门》笔记 - 03

    接下来是概率论的一些基本的概念。 `随机变量`就是一个取值不确定的变量。 这个在工作生活中应用的实在是太广泛了。比如老板问你这件事情明天能不能搞完?一般情况下,你的回答可能就是一个随机变量。 随机变量可以分为两种类型:连续型和离散型。 `随机变量的分布`用来描述随机变量出现某种结果的可能性。可以用一些分布函数来表示。

    作者: 黄生
    31
    0