已找到以下 10000 条记录
  • 深度学习应用开发》学习笔记-06

    什么是深度深度就是简单的量变。神经网络到深度神经网络,就是每一层的节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代的时候,在研究猫的神经元时发现的,199

    作者: 黄生
    1127
    3
  • 深度学习应用开发》学习笔记-11

    太快步子大了容易扯着蛋,也没有必要。这里的用学习率/步长来描述这个节奏,如果梯度是2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就

    作者: 黄生
    1128
    1
  • 深度学习笔记之理解

            我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习的模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他

    作者: 小强鼓掌
    826
    2
  • 深度学习应用开发》学习笔记-10

    征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度的减少损失的模型。这一过程称为经验风

    作者: 黄生
    1431
    3
  • 深度学习应用开发》学习笔记-13

    Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0

    作者: 黄生
    457
    0
  • 分享深度学习算法

    context=cs.GR推荐原因这是第一篇关于基于深度学习的立体匹配任务的综述文章,以往关于立体匹配的综述文章多基于传统方法,或者年代已久。这篇综述文章主要总结了过去6年发表在主要会议和期刊上的150多篇深度立体匹配论文,可以称得上方法最新,分类最全,概括最广。在论文中,作者首先介绍了深度立体匹配

    作者: 初学者7000
    953
    3
  • 深度学习入门》笔记 - 07

    些偏导数等于零,解方程得到b和w的估计值。但是这个方法只适合少数结构比较简单的模型(比如线性回归模型),不能求解深度学习这类复杂模型的参数。 所以下面介绍的是深度学习中常用的优化算法:`梯度下降法`。其中有三个不同的变体:随机梯度下降法、全数据梯度下降法、和批量随机梯度下降法。

    作者: 黄生
    156
    2
  • 深度学习应用开发》学习笔记-28

    这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的

    作者: 黄生
    837
    3
  • 深度学习应用开发》学习笔记-23

    从人的角度来看,12个特征比1个特征要复杂了很多, 但对计算机来说,无所谓。 在tf里,12元的线性回归方程的实现,比1元的线性方程的实现,代码上也只是多了一点点复杂度而已。 这就是计算机的优势。 只是最后训练的结果,为什么都是nan,像老师说的,脸都黑了哦~ 这次先到这里,请听下回分解~

    作者: 黄生
    1471
    4
  • 深度学习应用开发》学习笔记-20

    落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等

    作者: 黄生
    934
    3
  • 深度学习应用开发》学习笔记-30

    终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。

    作者: 黄生
    527
    0
  • 深度学习笔记之应用

          深度学习对语音识别产生了巨大影响。语音识别在 20 世纪 90 年代得到提高后,直到约 2000 年都停滞不前。深度学习的引入 (Dahl et al., 2010; Deng et al.,2010b; Seide et al., 2011; Hinton et al

    作者: 小强鼓掌
    624
    0
  • 深度学习笔记之贡献

            深度学习的另一个最大的成就是其在强化学习 (reinforcement learning) 领域的扩展。在强化学习中,一个自主的智能体必须在没有人类操作者指导的情况下,通过试错来学习执行任务。DeepMind 表明,基于深度学习的强化学习系统能够学会玩Atari 视频游戏,并在多种任务中可与人类匹敌

    作者: 小强鼓掌
    856
    2
  • 深度学习应用开发》学习笔记-31

    com/data/forums/attachment/forum/202108/04/105156dxvyfdoaeoob1d2w.png) ```python #插播学习一下reshape,总体顺序还是不变,但切分点变了 import numpy as np int_array=np.array([i for

    作者: 黄生
    520
    0
  • 深度学习笔记之特性

            深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千

    作者: 小强鼓掌
    930
    1
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1038
    2
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    177
    1
  • 深度学习入门》笔记 - 26

    欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待

    作者: 黄生
    49
    2
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1264
    13