已找到以下 10000 条记录
  • 机器学习深度学习未来趋势

    机器学习深度学习未来蕴含着无穷可能!越来越多机器人不仅用在制造业,而且在一些其他方面可以改善我们日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 什么是AI、机器学习深度学习

    也造就了深度学习蓬勃发展,“深度学习”才一下子火热起来。击败李世石Alpha go即是深度学习一个很好示例。GoogleTensorFlow是开源深度学习系统一个比较好实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行深度神经网络模型

    作者: Amber
    11519
    6
  • 深度学习-语义分割

    而,我们可以轻松地通过重叠方式观察到每个目标。argmax方式也很好理解。如上图所示,每个通道只有0或1,以Person通道为例,红色1表示为Person像素,其他像素均为0。其他通道也是如此,并且不存在同一个像素点在两个以上通道均为1情况。因此,通过argmax就

    作者: @Wu
    642
    0
  • 华为云开发者人工智能学习路线_开发者中心 -华为云

    顶会上论文数量在逐步增多。通常,对话系统包含语言理解、对话状态跟踪、对话策略学习、语言生成等四个模块。之前很多文章在对话系统中语言理解和生成工作有较多分享,本文主要关注点在对话策略学习,因而梳理了2019年对话策略学习在NLP顶会上工作。 开始阅读 阶段三:AI中级开发者

  • 深度学习

    深度学习是实现机器学习一种技术。早期机器学习研究者中还开发了一种叫人工神经网络算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑启发而来:神经元之间相互连接关系。但是,人类大脑中神经元可以与特定范围内任意神经元连接,而人工神经网络中数据传播要经历不同层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 深度学习框架TensorFlow

        TensorFlow是一个基于数据流编程(dataflow programming)符号数学系统,被广泛应用于各类机器学习(machine learning)算法编程实现,其前身是谷歌神经网络算法库DistBelief   。Tensorflow拥有多层级结构,可部署于各

    作者: QGS
    555
    0
  • 《MXNet深度学习实战》—1.2 深度学习框架

    1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样接口和不同语言API,而且拥有详细文档和活跃社区,因此设计网络更加灵活和高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡和分布式训练方面都有很好支持,因此训练模型时间也大大

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 深度学习应用开发》学习笔记-01

    之前好像有听人介绍说吴明辉课程很不错,最近刚好在中国大学APP上看到他一个人工智能相关课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow实践》。是一个入门级别的课程,不需要人工智能基础,不需要太多数学知识,也不需要什么编程经验。我觉得很

    作者: 黄生
    1139
    5
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型神经网络。而这些大公司也花费了很大精力来维护 TensorFlow、PyTorch 这样庞大深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4077
    2
  • 华为云AI系统创新Lab论文Poisoner被国际顶级会议ACM MM录用

    Poisoning》提出了一种创新去偏见方法—“poisoner”。这种方法利用数据投毒将偏见模型学习偏见进一步以数据投毒形式保存为被投毒训练数据,从而促使模型学习更多偏见。通过这种方式,模型可以潜在地为偏见特征进行自动化地标注,即识别出数据中与这些虚假相关性相矛盾样本。随后,在目标

  • 深度学习修炼(一)——从机器学习转向深度学习

    说,各种深度学习框架已经提供了我们所需各种颜料。我们要做,就是利用不同颜料,在空白纸上,一笔一划画出我们所需网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中点点滴滴

    作者: ArimaMisaki
    发表时间: 2022-08-08 16:45:09
    244
    0
  • 深度学习应用开发》学习笔记-07

    还有一个是vggnet,他问题是参数太大。深度学习问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习开发框架。先整了了Theano,开始于2007年加拿大蒙特利尔大学。随着tens

    作者: 黄生
    827
    2
  • 深度学习之推断

    在Bagging情况下,每一个模型在其相应训练集上训练到收敛。在Dropout情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之是,在单个步骤中我们训练一小部分子网络,参数共享会使得剩余子网络也能有好参数设定

    作者: 小强鼓掌
    426
    4
  • 深度学习之Dropout

    处理。Dropout提供了一种廉价Bagging集成近似,能够训练和评估指数级数量神经网络。具体而言,Dropout训练集成包括所有从基础网络除去非输出单元后形成子网络。最先进神经网络基于一系列仿射变换和非线性变换,我们只需将一些单元输出乘零就能有效地删除一个单元。这

    作者: 小强鼓掌
    1023
    2
  • 深度学习卷积操作

    卷积操作就是filter矩阵跟filter覆盖图片局部区域矩阵对应每个元素相乘后累加求和。

    作者: 我的老天鹅
    630
    8
  • 深度学习=炼金术?

    深度学习是目前人工智能最受关注领域,但黑盒学习法使得深度学习面临一个重要问题:AI能给出正确选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习起源、应用和待解决问题;可解释AI研究方向和进展。

    主讲人:华为MindSpore首席科学家,陈雷
    直播时间:2020/03/27 周五 14:00 - 15:00
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊RNN,主要是为了解决长序列训练过程中梯度消失和梯度爆炸问题。简单来说,就是相比普通RNN,LSTM能够在更长序列中有更好表现。

    作者: 我的老天鹅
    1892
    10
  • 走近深度学习 认识MoXing

    深度学习服务是基于华为云强大高性能计算提供一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。

  • 深度残差收缩网络:一种深度学习故障诊断算法

    png【翻译】如第一部分所述,作为一种潜在、能够从强噪声振动信号中学习判别性特征方法,本研究考虑了深度学习和软阈值化集成。相对应地,本部分注重于开发深度残差网络两个改进变种,即通道间共享阈值深度残差收缩网络、通道间不同阈值深度残差收缩网络。对相关理论背景和必要想法进行了详细介绍。A.

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0