检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据依赖性性能是两种算法之间的主要关键区别。虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解的原因。但是,在这种情况下,我们可以看到算法的使用以及他们手工制作的规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因
个神经元,它接收的输入来源于许多其他的单元,并且计算它自己的激活值。使用多层向量值表示的想法来源于神经科学。用于计算这些表示的函数 f(i)(x) 的选择,也或多或少地受到神经科学观测的指引,这些观测是关于生物神经元计算功能的。然而,现代的神经网络研究受到更多的是来自许多数学和工
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。
多任务学习 (Caruana, 1993) 是通过合并几个任务中的样例(可以视为对参数施加的软约束)来提高泛化的一种方式。额外的训练样本以同样的方式将模型的参数推向泛化更好的方向,当模型的一部分在任务之间共享时,模型的这一部分更多地被约束为良好的值(假设共享是合理的),往往能更好
中大部分区域都是无效的输入,感兴趣的输入只分布在包含少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离
搭建起来的一样,稍有不同的是,在神经网络中层的类型更多样,而且层与层之间的联系复杂多变。深度学习中的深度主要就是来描述神经网络中层的数量,目前神经网络可以达到成百上千层,整个网络的参数量从万到亿不等,所以深度学习并不是非常深奥的概念,其本质上就是神经网络。神经网络并不是最近几年才
我们到目前为止看到的线性模型和神经网络的最大区别,在于神经网络的非线性导致大多数我们感兴趣的损失函数都成为了非凸的。这意味着神经网络的训练通常使用的迭代的、基于梯度的优化,仅仅使得代价函数达到一个非常小的值;而不是像用于训练线性回归模型的线性方程求解器,或者用于训练逻辑回归或SVM的凸优化算
中大部分区域都是无效的输入,感兴趣的输入只分布在包含少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离
中大部分区域都是无效的输入,感兴趣的输入只分布在包含少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
实地执行,所以当用户的代码出现缺陷(bug)的时候,可以通过这些信息轻松快捷地找到出错的代码,不会让用户在调试(Debug)的时候因为错误的指向或者异步和不透明的引擎浪费太多的时间。 PyTorch的代码相对于TensorFlow而言,更加简洁直观,同时对于TensorFlow高
这种学习范式试图跨越监督学习和非监督学习之间的界限。由于缺少标签数据和收集标签数据集的高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理
年到 2018 年,短短的六年时间里,深度学习所需的计算量增长了 300,000%。然而,与开发算法相关的能耗和碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻的问题。 针对这一问题,哥本哈根大学计算机科学系的两名学生,协同助理教授 一起开发了一个的软件程序,它可以计算
在深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks
(AutoEncoder)、生成对抗网络 (GAN)等。深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行
然而,经验风险最小化很容易导致过拟合。高容量的模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效的现代优化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化
虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的