已找到以下 10000 条记录
  • 机器学习深度学习比较

    数据依赖性性能是两种算法之间主要关键区别。虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解原因。但是,在这种情况下,我们可以看到算法使用以及他们手工制作规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因

    作者: @Wu
    541
    1
  • 深度学习深度前馈网络

    个神经元,它接收输入来源于许多其他单元,并且计算它自己激活值。使用多层向量值表示想法来源于神经科学。用于计算这些表示函数 f(i)(x) 选择,也或多或少地受到神经科学观测指引,这些观测是关于生物神经元计算功能。然而,现代神经网络研究受到更多是来自许多数学和工

    作者: 小强鼓掌
    1256
    4
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习之多任务学习

    多任务学习 (Caruana, 1993) 是通过合并几个任务中样例(可以视为对参数施加软约束)来提高泛化一种方式。额外训练样本以同样方式将模型参数推向泛化更好方向,当模型一部分在任务之间共享时,模型这一部分更多地被约束为良好值(假设共享是合理),往往能更好

    作者: 小强鼓掌
    532
    1
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据和无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离

    作者: 小强鼓掌
    1676
    3
  • 《MXNet深度学习实战》—1.1.3 深度学习

    搭建起来一样,稍有不同是,在神经网络中层类型更多样,而且层与层之间联系复杂多变。深度学习深度主要就是来描述神经网络中层数量,目前神经网络可以达到成百上千层,整个网络参数量从万到亿不等,所以深度学习并不是非常深奥概念,其本质上就是神经网络。神经网络并不是最近几年才

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 深度学习之基于梯度学习

    我们到目前为止看到线性模型和神经网络最大区别,在于神经网络非线性导致大多数我们感兴趣损失函数都成为了非凸。这意味着神经网络训练通常使用迭代、基于梯度优化,仅仅使得代价函数达到一个非常小值;而不是像用于训练线性回归模型线性方程求解器,或者用于训练逻辑回归或SVM凸优化算

    作者: 小强鼓掌
    832
    2
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据和无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据和无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离散

    作者: 小强鼓掌
    811
    1
  • 深度学习初体验

    通过对课程学习,从对EI初体验到对深度学习基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理

    作者: ad123445
    8089
    33
  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    实地执行,所以当用户代码出现缺陷(bug)时候,可以通过这些信息轻松快捷地找到出错代码,不会让用户在调试(Debug)时候因为错误指向或者异步和不透明引擎浪费太多时间。 PyTorch代码相对于TensorFlow而言,更加简洁直观,同时对于TensorFlow高

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 分享深度学习发展混合学习

      这种学习范式试图跨越监督学习和非监督学习之间界限。由于缺少标签数据和收集标签数据集高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    930
    1
  • 深度学习在环保

    年到 2018 年,短短六年时间里,深度学习所需计算量增长了 300,000%。然而,与开发算法相关能耗和碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻问题。 针对这一问题,哥本哈根大学计算机科学系两名学生,协同助理教授 一起开发了一个软件程序,它可以计算

    作者: 初学者7000
    839
    2
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋深度学习研究领域)中,该模型规模正在扩大。最新gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习未来会更大吗?通常情况下,gpt-3是非常有说服力,但它在过去一再表明,“成功

    作者: 初学者7000
    636
    1
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    (AutoEncoder)、生成对抗网络 (GAN)等。深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。深度学习深度”体现在将数据转换为所需要数据层数之深。给定模型进行

    作者: QGS
    946
    0
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法是基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化

    作者: 小强鼓掌
    335
    1
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    876
    3