检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于并不总是清楚计算图的深度或概率模型图的深度哪一个是最有意义的,并且由于不同的人选择不同的最小元素集来构建相应的图,因此就像计算机程序的长度不存在单一的正确值一样,架构的深度也不存在单一的正确值。另外,也不存在模型多么深才能被修饰为 “深”的共识。但相比传统机器学习,深度学习研究的模型涉及更多
引言 随着深度学习模型在各个领域的广泛应用,模型的安全性和防御能力变得尤为重要。攻击者可能会利用模型的漏洞进行对抗性攻击,导致模型输出错误的结果。本文将介绍如何使用Python实现深度学习模型的安全与防御,并提供详细的代码示例。 所需工具 Python 3.x TensorFlow
创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练
第一个观点是基于评估架构所需执行的顺序指令的数目。假设我们将模型表示为给定输入后,计算对应输出的流程图,则可以将这张流程图中的最长路径视为模型的深度。正如两个使用不同语言编写的等价程序将具有不同的长度;相同的函数可以被绘制为具有不同深度的流程图,其深度取决于我们可以用来作为一个步骤的函数。图1.3
在深度学习的背景下,大多数正则化策略都会对估计进行正则化。估计的正则化以偏差的增加换取方差的减少。一个有效的正则化是有利的 ‘‘交易’’,也就是能显著减少方差而不过度增加偏差。主要侧重模型族训练的 3 个情形:(1)不包括真实的数据生成过程——对应欠拟合和含有偏差的情况,(2)匹
com/rootlu/MetaHIN推荐原因推荐系统旨在预测用户对物品的偏好,从而向用户提供其感兴趣的商品,为用户解决信息过载问题。为了缓解推荐系统中异质信息网络的“冷启动”问题,作者提出MetaHIN模型。MetaHIN在模型层面探索了元学习的能力,同时在数据层面研究了异质信息网络的表达能力。在MetaHIN中,作
在本文中,我们详细介绍了Transformer模型的基本原理,并使用Python和TensorFlow/Keras实现了一个简单的Transformer模型。通过本文的教程,希望你能够理解Transformer模型的工作原理和实现方法,并能够应用于自己的任务中。随着对Transformer模型的理解加深,你可以
创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。
在深度学习领域,TensorFlow作为一款强大的开源机器学习框架,为研究者和开发者提供了丰富的工具和库来构建、训练和部署机器学习模型。随着模型规模的不断扩大和应用场景的日益复杂,如何高效地优化这些模型,使之在有限的计算资源下达到最佳性能,成为了一个至关重要的课题。本文将深入探讨
在本文中,我们详细介绍了BERT模型的基本原理,并使用Python和TensorFlow实现了一个简单的BERT分类模型。通过本文的教程,希望你能够理解BERT模型的工作原理和实现方法,并能够应用于自己的任务中。随着对BERT模型的理解加深,你可以尝试实现更复杂的任务,如问答系统、命名实体识别等。
模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自
需要减小模型的大小并降低其计算复杂度。知识蒸馏和模型压缩是两种常用的方法。 2. 知识蒸馏概述 知识蒸馏是一种通过将复杂模型(教师模型)的知识传递给简单模型(学生模型)的方法。教师模型通常是一个大型的预训练模型,而学生模型则是一个较小的模型。通过让学生模型学习教师模型的输出,可以在保持性能的同时减小模型的大小。
神经网络通过大量训练样本学习数据的分布,然后预测结果;可以用于端到端系统做联合优化,相比现有方法可以做到更优。 基于深度学习的端到端通信系统模型可以分为两类:确定信道模型与未知信道模型。 确定信道模型的端到端系统 O’Shea1 提出了一种使用深度神经网络的自编码器来实现端到端通信系统。 通信系统可以看着为如下模型:
尝试对之前做过的一些项目进行一些梳理,另外还对一些比较新的技术进行了一些探索,这其中就包括深度学习相关的一些框架,如 TensorFlow、Keras 等等。想必大家都或多或少听过 TensorFlow 的大名,这是 Google 开源的一个深度学习框架,里面的模型和 API 可以说基本是一应俱全,但
Keras 在本教程中,您将学习如何使用 Keras 和深度学习执行回归。 您将学习如何训练 Keras 神经网络进行回归和连续值预测,特别是在房价预测的背景下。 今天的帖子开始了关于深度学习、回归和连续值预测的 3 部分系列。 我们将在房价预测的背景下研究 Keras 回归预测:
深度学习源于神经网络的研究,可理解为深层的神经网络。通过它可以获得深层次的特征表示,免除人工选取特征的繁复冗杂和高维数据的维度灾难问题。目前较为公认的深度学习的基本模型包括: 基于受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)的深度信念网络(Deep
应学习率算法等。 硬件和软件基础设施的改进:新一代的GPU、TPU等硬件加速器以及深度学习框架的不断优化,使得训练和部署深度学习模型变得更加高效和便捷。 总的来说,深度学习作为AI大模型的核心技术之一,已经成为解决各种复杂任务的重要工具。随着研究的不断深入和技术的不断进步,深度学习将继续推动人工智能技术的发展和应用。
针对物体检测作业,排查思路请参见确保OBS中的数据存在、检查OBS的访问权限、检查图片是否符合要求、检查标注框是否符合要求(物体检测)。 针对预测分析作业,排查思路请参见确保OBS中的数据存在、检查OBS的访问权限、预测分析作业失败的排查思路。 确保OBS中的数据存在 如果存储在OBS中的图片或数据被删除,
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。
自动学习为什么训练失败? 当自动学习项目训练失败时,请根据如下步骤排除问题。 进入当前账号的费用中心,检查是否欠费。 是,建议您参考华为云账户充值,为您的账号充值。 否,执行2。 检查存储图片数据的OBS路径。是否满足如下要求: 此OBS目录下未存放其他文件夹。 文件名称中无特殊