检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对梯度做
可能具有过高的方差),k-折交叉验证算法可以用于估计学习算法 A 的泛化误差。数据集 D 包含的元素是抽象的样本 z(i) (对于第 i 个样本),在监督学习的情况代表(输入,目标)对 z(i) = (x(i), y(i)) ,或者无监督学习的情况下仅用于输入 z(i) = x(i)。该算法返回
学习是我们所谓的获取完成任务的能力。例如,我们的目标是使机器人能够行走,那么行走便是任务。我们可以编程让机器人学会如何行走,或者可以编写特定的指令,人工指导机器人如何行走。通常机器学习任务定义为机器学习系统该如何处理样本 (example)。样本是指我们从某些希望机器学习系统处理的对象或事件中收集到的已经量化的特征
字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。 如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
学习深度学习是否要先学习完机器学习,对于学习顺序不太了解
1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support
供的值是特征还是目标。通俗地说,无监督学习是指从不需要人为注释样本的分布中抽取信息的大多数尝试。该术语通常与密度估计相关,学习从分布中采样,学习从分布中去噪,需要数据分布的流形,或是将数据中相关的样本聚类。 一个经典的无监督学习任务是找到数据的 “最佳”表示。“最佳
面对人工标注大量样本费时费力,一些稀有类别样本难于获取等问题,零样本图像分类成为计算机视觉领域的一个研究热点。首先,对零样本学习,包括直推式零样本学习和归纳式零样本学习进行了简单介绍;其次,重点介绍了基于空间嵌入零样本图像分类方法和基于生成模型零样本图像分类方法以及它们的子类方法
NLP中的小样本学习与元学习:走向更智能的自然语言处理 1. 引言 随着自然语言处理(NLP)领域的不断发展,研究者们逐渐关注到处理小样本学习和元学习的问题。小样本学习指的是在有限的数据集上训练模型,而元学习则涉及在不同任务之间进行学习,从而使得模型能够更好地适应新任务。本文
提出方案: 约束正负例的Embedding之间的距离:在传统loss的基础上,约束正负例之间的Embedding距离。但是模型没有直接对正负例的Embeding做约束,而是通过约束正例与query之间的距离与正负例之间的距离,达到加大正负例之间Embedding距离的目的。
这种复杂性日益增加的趋势已将其推向逻辑结论,即神经图灵机 (Graves et al., 2014) 的引入,它能学习读取存储单元和向存储单元写入任意内容。这样的神经网络可以从期望行为的样本中学习简单的程序。例如,从杂乱和排好序的样本中学习对一系列数进行排序。这种自我编程技术正处于起步阶段,但原则上未来可以适用于几乎所有的任务。
“任务”定义中,学习过程本身并不是任务。学习是我们所谓的获取完成任务的能力。例如,我们的目标是使机器人能够行走,那么行走便是任务。我们可以编程让机器人学会如何行走,或者可以编写特定的指令,人工指导机器人如何行走。 通常机器学习任务定义为机器学习系统该如何处理样本 (exa
从decode看,如果系数(loc[2:] 为宽高)是1,那么就是priors[:,2:],就是候选框。 def decode(loc, priors, variances): """Decode locations from
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,
早先我们讨论过和训练数据相同分布的样本组成的测试集可以用来估计学习过程完成之后的学习器的泛化误差。其重点在于测试样本不能以任何形式参与到模型的选择,包括设定超参数。基于这个原因,测试集中的样本不能用于验证集。因此,我们总是从训练数据中构建验证集。特别地,我们将训练数据分成两个不相
本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng
深度学习常用术语· 样本(sample)或输入(input)或数据点(data point):训练集中特定的实例。我们在上一章中看到的图像分类问题,每个图像都可以被称为样本、输入或数据点。· 预测(prediction)或输出(output):由算法生成的值称为输出。例如,在先前
Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。
的输出与附近的数据点 x 非常不同。在许多情况下,x′ 与 x 非常近似,人类观察者不会察觉原始样本和对抗样本(adversarial example)之间的差异,但是网络会作出非常不同的预测。对抗样本在很多领域有很多影响,例如计算机安全,这超出了本章的范围。然而,它们在正则化的背景下很有
x 非常不同。在许多情况下,x′ 与 x 非常近似,人类观察者不会察觉原始样本和对抗样本(adversarial example)之间的差异,但是网络会作出非常不同的预测。见图 7.8 中的例子。对抗样本在很多领域有很多影响,例如计算机安全,这超出了本章的范围。然而,它们在正则化