已找到以下 10000 条记录
  • 《AI安全之对抗样本入门》—

    1.5 集成学习集成学习(Ensemble Learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。如图1-34所示,集成学习的思路是在对新的实例进行分类的时候,把若干个单个分类器集成起来,通过对多个

    作者: 华章计算机
    发表时间: 2019-06-17 16:23:12
    5212
    0
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 深度学习应用开发》学习笔记-20

    数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等 最后1个是自住房的平均房价,是输出值/预测值/标签。 代码里用到的模块有numpy,pandas, shuffle

    作者: 黄生
    934
    3
  • 深度学习导论

    Network)的扩展和应用为基础,这次浪潮的出现标志着深度学习时代的来临。这一阶段的研究主要集中在如何提高深度神经网络的性能和泛化能力上。SVM作为一种经典的机器学习算法,在分类问题上表现出了良好的性能。随着深度学习的不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域的重要工具,例如自然

    作者: 林欣
    42
    1
  • 【mindSpore】【深度学习】求指路站内的深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • UpdateSamples 批量更新样本标签 - API

    该API属于ModelArts服务,描述: 批量更新样本标签,包括添加、修改和删除样本标签。当请求体中单个样本的“labels”参数传空列表时,表示删除该样本的标签。接口URL: "/v2/{project_id}/datasets/{dataset_id}/data-annotations/samples"

  • 深度学习之批量算法

    机器学习算法和一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的

    作者: 小强鼓掌
    972
    3
  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    840
    2
  • 深度学习应用开发》学习笔记-29

    x_test=tf.cast(scale(x_test),dtype=tf.float32) #None代表未知,因为我们可以一次带入一行样本,也可以一次带入多行样本 #x=tf.placeholder(tf.float32,[None,12],name="X") #y=tf.placeholder(tf

    作者: 黄生
    768
    3
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    深度学习是支持人工智能发展的核心技术,云服务则是深度学生的主要业务之一。深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络

    作者: QGS
    946
    0
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习之模板匹配

    1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support

    作者: 小强鼓掌
    464
    1
  • 百度RocketQA系列搜索技术论文解析(二)

       提出方案: 约束正负例的Embedding之间的距离:在传统loss的基础上,约束正负例之间的Embedding距离。但是模型没有直接对正负例的Embeding做约束,而是通过约束正例与query之间的距离与正负例之间的距离,达到加大正负例之间Embedding距离的目的。

    作者: 人工智障研究员
    发表时间: 2022-05-16 11:38:06
    671
    0
  • 深度学习之设计矩阵

    个元素的结合:{x(1), x(2), . . . , x(m)}。这种表示方式并非意味着样本向量 x(i) 和 x(j) 有相同的大小。在监督学习中,样本包含一个标签或目标和一组特征。例如,我们希望使用学习算法从照片中识别物体。我们需要明确哪些物体会出现在每张照片中。我们或许会用数字编码表示,如

    作者: 小强鼓掌
    1662
    1
  • 基于重建的无负样本异常检测

    量目标样本告诉D网络第二排是我们的学习目标。VAE的mse(VAE)是通过一个一个像素的差异来独立学习,而GAN的discrimator是从图像整体统筹考虑学习目标图像      •  怎么来学习D?用G:要学习D需要有正负样本,

    作者: 语音服务
    发表时间: 2021-04-29 12:18:39
    2307
    0
  • ListSearch 获取样本搜索条件 - API

    该API属于ModelArts服务,描述: 获取样本搜索条件。接口URL: "/v2/{project_id}/datasets/{dataset_id}/data-annotations/search-condition"

  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    628
    1
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习之虚拟对抗

    纯粹的线性模型,如逻辑回归,由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签

    作者: 小强鼓掌
    677
    1
  • 深度学习之模板匹配

    1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support

    作者: 小强鼓掌
    550
    1