内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习入门,keras实现回归模型

    Regression with Keras 在本教程中,您将学习如何使用 Keras 和深度学习执行回归。 您将学习如何训练 Keras 神经网络进行回归和连续值预测,特别是在房价预测的背景下。 今天的帖子开始了关于深度学习、回归和连续值预测的 3 部分系列。 我们将在房价预测的背景下研究

    作者: AI浩
    发表时间: 2021-12-22 14:43:35
    1173
    0
  • 分享适合科学研究深度学习模型

    热门的任务已经取得了一些进展。当前需要处理序列数据的核心人物包括:语言建模、序列到序列转换、问答等  深度学习模型那么多,科学研究选哪个?序列到序列预测任务的图示语言建模(Next Token Prediction)作为一种训练方法,将时间或者位置t的序列标记作为输入,然后用这些

    作者: 初学者7000
    1261
    5
  • 无监督学习深度生成模型

     图像领域的深度生成技术 基于神经网络的深度学习技术  变分自编码器包括编码器和解码器  对抗生成网络包括生成器和判别器  主流场景包括:虚拟图像生成、风格迁移、图像超分、虚拟视频生成、音乐生成、文字生成图像等。

    作者: 可爱又积极
    1069
    2
  • 深度学习——VGG16模型详解-转载

    很明显: 即训练时间过长,调参难度大。 需要的存储容量大,不利于部署。 5、VGG模型所需要的内存容量  借鉴一下大佬的图:    6、总结  通过增加深度能有效地提升性能; VGG16是最佳的模型,从头到尾只有3x3卷积与2x2池化,简洁优美; 卷积可代替全连接,可适应各种尺寸

    作者: 泽宇-Li
    69
    2
  • 基于TensorFlow的深度学习模型优化策略

    通过应用上述优化策略,我们可以观察到模型训练的时间减少,同时模型在测试集上的表现得到提升。例如,数据增强和批量归一化可以有效增加模型的泛化能力;动态学习率和早停机制确保了模型不会过度拟合训练数据;分布式训练则显著加速了训练过程。 结论与展望 通过上述策略的综合运用,我们不仅能够提高深度学习模型的训练效率

    作者: 周周的奇妙编程
    发表时间: 2024-06-09 13:54:24
    17
    0
  • 模型学习】SqueezeNet模型介绍

    dimensions该部分主要评估压缩模型及其性能;结论是SqueezeNet这样的小模型依然可以被压缩。SqueezeNet + DeepCompression,得到比AlexNet小510倍同时保证准确度不变的模型! 本实验主要基于AlexNet做模型压缩,在不影响准确率的情况下,对比压缩前后模型大小。因

    作者: Cxxxx
    1579
    0
  • 走近深度学习,认识MoXing:模型定义教程

    Stopping](使用Early Stopping)1 使用MoXing模型库的内置模型目前MoXing集成了一些神经网络模型,用户可以直接使用mox.get_model_fn获取这些模型。以及使用mox.get_model_meta获取这些模型的元信息。例:训练一个ResNet_v1_50:import

    作者: 云上AI
    发表时间: 2018-08-22 10:17:48
    6783
    0
  • 《Keras深度学习实战》—2.6.2 模型类型

    2.6.2 模型类型Keras有两种模型类型:序贯模型使用函数API创建的模型

    作者: 华章计算机
    发表时间: 2019-06-15 12:27:44
    7393
    0
  • 模型封装

    模型封装:将机理、方法等,数学/物理/化学变化或其他类型的模型,打包成平台可读/可识别的模型单元;支持语言版本有Java8.0、python2.7\python3.6、C#.NET Core 2.0、.NET Core 2.1等。

    作者: 金刚石
    1955
    0
  • 模型学习】SENet模型介绍

    SENet学习1.背景目前很多模型都是从空间维度上来提升网络的性能,那么网络是否可以从其他层面来考虑去提升性能,比如考虑特征通道之间的关系?基于这一点提出了Squeeze-and-Excitation Networks(简称SENet)。作者的动机是希望显式地建模特征通道之间的相

    作者: DFRJ
    2277
    0
  • 使用Python实现深度学习模型:强化学习深度Q网络(DQN)

    深度Q网络(Deep Q-Network,DQN)是结合深度学习与强化学习的一种方法,用于解决复杂的决策问题。本文将详细介绍如何使用Python实现DQN,主要包括以下几个方面: 强化学习简介 DQN算法简介 环境搭建 DQN模型实现 模型训练与评估 1. 强化学习简介 强

    作者: Echo_Wish
    发表时间: 2024-06-27 10:51:33
    29
    0
  • 使用Python实现深度学习模型:语言模型与文本生成

    1. 语言模型简介 语言模型是用来估计一个句子(或一个单词序列)概率的模型。简单地说,语言模型试图预测下一个单词。基于深度学习的语言模型,如GPT-2和BERT,已经在自然语言处理领域取得了显著的成果。 1.1 GPT(生成式预训练变换器) GPT是一种基于Transfo

    作者: Echo_Wish
    发表时间: 2024-06-25 22:13:48
    6
    0
  • DL之模型调参:深度学习算法模型优化参数之对深度学习模型的超参数采用网格搜索进行模型调优(建议收藏)

    DL之模型调参:深度学习算法模型优化参数之对深度学习模型的超参数采用网格搜索进行模型调优(建议收藏)       目录 神经网络的参数调优 1、神经网络的通病—各种参数随机性 2、评估模型学习能力

    作者: 一个处女座的程序猿
    发表时间: 2021-04-02 02:11:24
    2205
    0
  • 为什么构建深度学习模型需要使用GPU

    深度学习中,深度学习模型有两个主要的操作,也就是前向传递和后向传递。前向传递将输入数据通过神经网络后生成输出;后向传递根据前向传递得到的误差来更新神经网络的权重。在矩阵中,我们知道计算矩阵就是第一个数组的行与第二个数组的列元素分别相乘。因此,在神经网络中,我们可以将第一个矩阵视

    作者: yyy7124
    844
    1
  • 分享适合科学研究深度学习模型(一)

    卷积神经网络    多层感知机只是简单的深度网络,在它的基础上,卷积神经网络发展了起来,成为了最广为人知的神经网络家族,其特有的卷积层允许许神经网络在图像的不同空间位置重复使用参数。作为一种对图像数据非常有用的归纳偏差,能够帮助更加有效地学习一些好特征以应用层面来分,卷积神经网络派

    作者: 初学者7000
    1139
    4
  • 从AI大模型的角度来看深度学习

    从AI大模型的角度来看,深度学习是一种基于多层神经网络结构的机器学习方法。这种方法通过使用多个层次的非线性变换,能够从原始数据中学习到复杂的表示和特征。这些表示和特征对于解决各种任务非常有用,包括图像识别、语音识别、自然语言处理等。在AI大模型中,深度学习被广泛应用于构建各种类型

    作者: 运气男孩
    28
    1
  • 分享适合科学研究深度学习模型(五)

    RL) 。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。深度学习 模型可以在强化学习中得到使用,形成 深度强化学习 。强化学习模型设计需要考虑三方面:一,如何表示状态空间和动作空间。二,如

    作者: 初学者7000
    1939
    6
  • 深度学习模型的中毒攻击与防御综述

    深度学习是当前机器学习和人工智能兴起的核心。随着深度学习在自动驾驶、门禁安检、人脸支付等严苛的安全领域中广泛应用,深度学习模型的安全问题逐渐成为新的研究热点。深度模型的攻击根据攻击阶段可分为中毒攻击和对抗攻击,其区别在于前者的攻击发生在训练阶段,后者的攻击发生在测试阶段。论文首次

    作者: yyy7124
    1357
    5
  • 分享适合科学研究深度学习模型(四)

    的神经网络模型,其中编码器神经网络接收输入序列并学习提取重要特征,然后解码器神经网络使用该特征来产生目标输出。该范式已经用于生物学和能源预测,其中在里面发挥重要作用的是Attention技术。递归神经网络模型的示意图问答也能够作为处理序列数据的一个基准,此类神经网络模型的标准是:

    作者: 初学者7000
    1541
    1
  • 深度强化学习模型优化算法综述

    将综述深度强化学习模型优化算法的发展及其在实际应用中的应用情况。 I. 引言 深度强化学习模型的优化算法是指在训练深度神经网络的同时,结合强化学习框架,使智能体能够从环境中学习到最优策略。优化算法的选择直接影响了模型的性能和训练效率。本文将介绍几种主流的深度强化学习模型优化算法

    作者: Y-StarryDreamer
    发表时间: 2024-05-20 14:44:53
    5
    0
提示

您即将访问非华为云网站,请注意账号财产安全