已找到以下 10000 条记录
  • 深度学习模型编译技术

    前言 深度学习模型的开发周期,包括训练阶段和部署阶段。训练阶段,用户需要收集训练数据,定义自己的模型结构,在CPU或者GPU硬件上进行训练,这个过程反复优化,直到训练出满意精度的模型。有了模型之后,我们需要将模型服务部署运行,我们期望服务延迟越低越好,吞吐越高越好。这里会从编译优

    作者: ross.xw
    发表时间: 2022-05-06 03:19:25
    1373
    0
  • 模型训练 - AI开发平台ModelArts

    模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自

  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

    作者: 我的老天鹅
    1890
    10
  • 创建联邦学习工程 - 网络智能体

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

  • 深度学习模型介绍

    深度神经网络:深度学习模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1759
    2
  • 自动学习训练后的模型是否可以下载? - AI开发平台ModelArts

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

  • 训练预测分析模型 - AI开发平台ModelArts

    训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

  • 深度学习模型平均

    aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model

    作者: 小强鼓掌
    734
    2
  • 浅谈深度学习模型压缩

    常见的模型压缩方法有以下几种:    模型蒸馏 Distillation,使用大模型的学到的知识训练小模型,从而让小模型具有大模型的泛化能力    量化 Quantization,降低大模型的精度,减小模型    剪枝 Pruning,去掉模型中作用比较小的连接    参数共享,

    作者: QGS
    34
    1
  • D-Plan AI 生态伙伴计划

    D-Plan AI 生态伙伴计划 D-Plan AI 生态伙伴计划 D-Plan AI 生态伙伴计划是围绕华为云一站式AI开发平台ModelArts推出的一项合作伙伴计划,旨在与合作伙伴一起构建合作共赢的AI生态体系,加速AI应用落地,华为云向伙伴提供培训、技术、营销和销售的全面支持。

  • 深度学习典型模型

    型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难

    作者: 某地瓜
    1672
    1
  • 深度学习模型轻量化

    移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:1

    作者: 可爱又积极
    1257
    4
  • 深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型

    深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型 1.Model-Agnostic Meta-Learning Model-Agnostic Meta-Learning (MAML): 与模型无关的元学习,可兼容于任何一种采用梯度下降算法的模型。

    作者: 汀丶
    发表时间: 2023-06-14 10:35:12
    27
    0
  • 创建工程 - 网络智能体

    创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。

  • 利用深度学习建立流失模型

    quential)模型。序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。可以通过向Sequential模型传递一个layer的list来构造该模型,也可以通过.add()方法一个个的将layer加入模型中。本文采用.add()方法将2层神经网络输入模型中。优化器的选择是S

    作者: 格图洛书
    发表时间: 2021-12-29 18:27:03
    571
    0
  • 使用Python实现深度学习模型:迁移学习与预训练模型

    迁移学习是一种将已经在一个任务上训练好的模型应用到另一个相关任务上的方法。通过使用预训练模型,迁移学习可以显著减少训练时间并提高模型性能。在本文中,我们将详细介绍如何使用Python和PyTorch进行迁移学习,并展示其在图像分类任务中的应用。 什么是迁移学习? 迁移学习的基本

    作者: Echo_Wish
    发表时间: 2024-05-21 12:46:22
    15
    0
  • 深度学习-通用模型调试技巧

    可以使深层的网络学习更容易些。有些模型(比如resnet50)已经在网络结构定义中加入了BatchNormalization,不需要自己再去添加。另外batch norm还有一个作用是,它还有一点正则化的效果7增加隐藏节点数增加模型复杂度8增加网络层数增加模型复杂度9更换整个网

    作者: 山海之光
    发表时间: 2019-08-08 21:26:02
    11278
    1
  • 自动学习训练作业失败 - AI开发平台ModelArts

    确保OBS中的数据存在 如果存储在OBS中的图片或数据被删除,且未同步至ModelArts自动学习或数据集中,则会导致任务失败。 建议前往OBS检查,确保数据存在。针对图像分类、声音分类、文本分类、物体检测等类型,可在自动学习的数据标注页面,单击“同步数据源”,将OBS中的数据重新同步至ModelArts中。

  • 使用Python实现深度学习模型:元学习模型无关优化(MAML)

    目录 元学习与MAML简介 MAML算法步骤 使用Python实现MAML 示例应用:手写数字识别 总结 1. 元学习与MAML简介 1.1 元学习学习是一种学习策略,旨在通过从多个任务中学习来提升模型在新任务上的快速适应能力。简单来说,元学习就是学习如何学习。 1.2

    作者: Echo_Wish
    发表时间: 2024-06-30 14:05:23
    3
    0
  • 迁移学习 - 网络智能体

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据