已找到以下 10000 条记录
  • 深度学习模型介绍

    深度神经网络:深度学习模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1760
    2
  • 深度学习-通用模型调试技巧

    可以使深层的网络学习更容易些。有些模型(比如resnet50)已经在网络结构定义中加入了BatchNormalization,不需要自己再去添加。另外batch norm还有一个作用是,它还有一点正则化的效果7增加隐藏节点数增加模型复杂度8增加网络层数增加模型复杂度9更换整个网

    作者: 山海之光
    发表时间: 2019-08-08 21:26:02
    11278
    1
  • 深度学习典型模型

    型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难

    作者: 某地瓜
    1673
    1
  • 深度学习模型平均

    aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model

    作者: 小强鼓掌
    734
    2
  • 深度学习模型轻量化

    移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:1

    作者: 可爱又积极
    1257
    4
  • 浅谈深度学习模型压缩

    常见的模型压缩方法有以下几种:    模型蒸馏 Distillation,使用大模型的学到的知识训练小模型,从而让小模型具有大模型的泛化能力    量化 Quantization,降低大模型的精度,减小模型    剪枝 Pruning,去掉模型中作用比较小的连接    参数共享,

    作者: QGS
    36
    1
  • 使用Python实现深度学习模型:元学习模型无关优化(MAML)

    目录 元学习与MAML简介 MAML算法步骤 使用Python实现MAML 示例应用:手写数字识别 总结 1. 元学习与MAML简介 1.1 元学习学习是一种学习策略,旨在通过从多个任务中学习来提升模型在新任务上的快速适应能力。简单来说,元学习就是学习如何学习。 1.2

    作者: Echo_Wish
    发表时间: 2024-06-30 14:05:23
    3
    0
  • 模型发布失败 - AI开发平台ModelArts

    模型,自动学习产生的模型都是以“exeML-”开头的。单击模型名称进入模型详情页面,在“基本信息”区域,获取“ID”的值。 图1 获取模型ID 获取模型事件信息。 进入模型详情页面后,单击“事件”页签,将事件信息表截图后反馈给技术支持人员。 图2 获取事件信息 父主题: 模型发布

  • 模型训练 - 网络智能体

    信息。 单击图标,查看模型评估报告。 评估指标:可以通过数值和图表方式展示各项指标的数据信息。 超参:展示训练集、测试集和标签列的信息。 任务系统参数:展示训练任务的配置参数信息。 创建联邦学习训练任务(WebIDE) 返回“模型训练”菜单界面,单击联邦学习工程所在行,进入工程详情界面。

  • 自动学习模型训练图片异常? - AI开发平台ModelArts

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

  • 使用Python实现深度学习模型:迁移学习与预训练模型

    迁移学习是一种将已经在一个任务上训练好的模型应用到另一个相关任务上的方法。通过使用预训练模型,迁移学习可以显著减少训练时间并提高模型性能。在本文中,我们将详细介绍如何使用Python和PyTorch进行迁移学习,并展示其在图像分类任务中的应用。 什么是迁移学习? 迁移学习的基本

    作者: Echo_Wish
    发表时间: 2024-05-21 12:46:22
    15
    0
  • 深度学习深度模型中的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    338
    1
  • 自动学习训练后的模型是否可以下载? - AI开发平台ModelArts

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

  • 利用深度学习建立流失模型

    quential)模型。序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。可以通过向Sequential模型传递一个layer的list来构造该模型,也可以通过.add()方法一个个的将layer加入模型中。本文采用.add()方法将2层神经网络输入模型中。优化器的选择是S

    作者: 格图洛书
    发表时间: 2021-12-29 18:27:03
    571
    0
  • 深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型

    深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型 1.Model-Agnostic Meta-Learning Model-Agnostic Meta-Learning (MAML): 与模型无关的元学习,可兼容于任何一种采用梯度下降算法的模型。

    作者: 汀丶
    发表时间: 2023-06-14 10:35:12
    27
    0
  • 创建联邦学习工程 - 网络智能体

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

  • 模型训练 - AI开发平台ModelArts

    模型训练 自动学习训练作业失败 父主题: 自动学习

  • 模型发布 - AI开发平台ModelArts

    模型发布 模型发布失败 父主题: 自动学习

  • 深度学习中的Normalization模型

    很快被作为深度学习的标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限和问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN的问题,最近两年又陆续有基于BN思想的很多改进Normalization模型被提出。BN是深度学习进展中里程

    作者: 可爱又积极
    841
    3
  • 深度学习模型族训练

    主导的过拟合。正则化的目标是使模型从第三种情况转化为第二种情况。在实践中,过于复杂的模型族不一定包括目标函数或真实数据生成过程,甚至也不包括近似过程。我们几乎从未知晓真实数据的生成过程,所以我们永远不知道被估计的模型族是否包括生成过程。然而,深度学习算法的大多数应用都是针对这样的

    作者: 小强鼓掌
    938
    3