内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习初体验

    通过对课程学习,从对EI初体验到对深度学习基本理解,收获了很多,做出如下总结:深度学习用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理

    作者: ad123445
    8091
    33
  • 深度学习在环保

    味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭年度能源消耗 深度学习训练数学模型识别大型数据集中模式过程。这是一个能源密集型过程,需要电力密集型专用硬件,每天 24 小时连续运行。

    作者: 初学者7000
    839
    2
  • 分享深度学习发展混合学习

      这种学习范式试图跨越监督学习和非监督学习之间界限。由于缺少标签数据和收集标签数据集高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    933
    1
  • 分享深度学习算法

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略和泛化能力上效果。对于一些关键方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据目的测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    953
    3
  • 分享深度学习笔记

    限速。负责任简化学习不仅使模型足够轻,可以使用,而且还确保它能够适应数据集中未出现拐角情况。在深度学习研究中,简化学习可能最不受关注,因为“我们通过一个可行架构尺寸实现了良好性能”不如“我们通过一个由成千上万个参数组成架构实现了最先进性能”。不可避免地,当高分成

    作者: 初学者7000
    637
    1
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习基础

    理解神经网络基本原理及常见深度学习算法结构和基本原理。

  • 深度学习之机器学习挑战

            机器学习主要挑战我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    517
    2
  • 深度学习模型结构

    对信息处理分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化

    作者: 小强鼓掌
    335
    1
  • 人工智能、机器学习深度学习关系

    数据一种机器学习技术。它基本特点,试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习与机器学习“神经网络”强相关,“神经网络”也是其主要算法和手段;或者我们可以将“深度学习”称之为“改良版神经网

    作者: 我的老天鹅
    1927
    23
  • 深度学习VGG网络

    VGG原理VGG16相比AlexNet一个改进采用连续几个3x3卷积核代替AlexNet中较大卷积核(11x11,7x7,5x5)。对于给定感受野(与输出有关输入图片局部大小),采用堆积小卷积核优于采用大卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂模式,而且代价还比

    作者: 我的老天鹅
    579
    16
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 深度学习Normalization模型

    很快被作为深度学习标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限和问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN问题,最近两年又陆续有基于BN思想很多改进Normalization模型被提出。BN深度学习进展中里程

    作者: 可爱又积极
    841
    3
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型怎么部署

    作者: 初学者7000
    884
    3
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    741
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    831
    3
  • 深度学习模型结构

    对信息处理分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1146
    2
提示

您即将访问非华为云网站,请注意账号财产安全