已找到以下 10000 条记录
  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    业化很难看懂底层代码,PyTorch源代码就要友好得多,更容易看懂。深入API,理解PyTorch底层肯定是一件令人高兴事。 3、PyTorch概述 由于在后文中还会详细介绍PyTorch特点,在此处就不详细介绍了。PyTorch最大优势建立神经网络动态,可以

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 分享深度学习算法

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略和泛化能力上效果。对于一些关键方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据目的测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    953
    3
  • 分享深度学习笔记

    限速。负责任简化学习不仅使模型足够轻,可以使用,而且还确保它能够适应数据集中未出现拐角情况。在深度学习研究中,简化学习可能最不受关注,因为“我们通过一个可行架构尺寸实现了良好性能”不如“我们通过一个由成千上万个参数组成架构实现了最先进性能”。不可避免地,当高分成

    作者: 初学者7000
    636
    1
  • 深度学习之机器学习挑战

            机器学习主要挑战我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 深度学习模型结构

    对信息处理分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 华为云开发者人工智能学习路线_开发者中心 -华为云

    论文数量在逐步增多。通常,对话系统包含语言理解、对话状态跟踪、对话策略学习、语言生成等四个模块。之前很多文章在对话系统中语言理解和生成工作有较多分享,本文主要关注点在对话策略学习,因而梳理了2019年对话策略学习在NLP顶会上工作。 开始阅读 阶段三:AI中级开发者

  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型怎么部署

    作者: 初学者7000
    877
    3
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化

    作者: 小强鼓掌
    335
    1
  • 什么AI、机器学习深度学习

    事实上,提出深度学习”概念Hinton教授加入了google,而Alpha go也是google家。在一个新兴行业,领军人才是多么重要啊! 总结:人工智能一个很老概念,机器学习人工智能一个子集,深度学习又是机器学习一个子集。机器学习深度学习都是需要大量数据

    作者: Amber
    发表时间: 2019-01-21 10:50:40
    5904
    0
  • 人工智能、机器学习深度学习关系

    数据一种机器学习技术。它基本特点,试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习与机器学习“神经网络”强相关,“神经网络”也是其主要算法和手段;或者我们可以将“深度学习”称之为“改良版神经网

    作者: 我的老天鹅
    1925
    23
  • 深度学习VGG网络

    VGG原理VGG16相比AlexNet一个改进采用连续几个3x3卷积核代替AlexNet中较大卷积核(11x11,7x7,5x5)。对于给定感受野(与输出有关输入图片局部大小),采用堆积小卷积核优于采用大卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂模式,而且代价还比

    作者: 我的老天鹅
    579
    16
  • 深度学习模型结构

    对信息处理分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1146
    2
  • 深度学习Normalization模型

    很快被作为深度学习标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限和问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN问题,最近两年又陆续有基于BN思想很多改进Normalization模型被提出。BN深度学习进展中里程

    作者: 可爱又积极
    841
    3
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    741
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    830
    3
  • AI、机器学习深度学习关系

    作者: andyleung
    1560
    1
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 深度学习之噪声

    Dropout另一个重要方面噪声乘性。如果固定规模加性噪声,那么加了噪声 ϵ 整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘

    作者: 小强鼓掌
    1045
    3