已找到以下 10000 条记录
  • 分享深度学习发展混合学习

      这种学习范式试图跨越监督学习和非监督学习之间界限。由于缺少标签数据和收集标签数据集高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    932
    1
  • 深度学习之机器学习挑战

            机器学习主要挑战我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 深度学习初体验

    通过对课程学习,从对EI初体验到对深度学习基本理解,收获了很多,做出如下总结:深度学习用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理

    作者: ad123445
    8090
    33
  • 深度学习在环保

    味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭年度能源消耗 深度学习训练数学模型识别大型数据集中模式过程。这是一个能源密集型过程,需要电力密集型专用硬件,每天 24 小时连续运行。

    作者: 初学者7000
    839
    2
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型怎么部署

    作者: 初学者7000
    880
    3
  • 分享深度学习算法

    种架构所有方法之间异同。其分析角度包括训练数据集、网络结构设计、它们在重建性能、训练策略和泛化能力上效果。对于一些关键方法,作者还使用了公开数据集和私有数据进行总结和比较,采用私有数据目的测试各类方法在全新场景下泛化性能。这篇论文能够为研究深度立体匹配研究人

    作者: 初学者7000
    953
    3
  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    业化很难看懂底层代码,PyTorch源代码就要友好得多,更容易看懂。深入API,理解PyTorch底层肯定是一件令人高兴事。 3、PyTorch概述 由于在后文中还会详细介绍PyTorch特点,在此处就不详细介绍了。PyTorch最大优势建立神经网络动态,可以

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 分享深度学习笔记

    限速。负责任简化学习不仅使模型足够轻,可以使用,而且还确保它能够适应数据集中未出现拐角情况。在深度学习研究中,简化学习可能最不受关注,因为“我们通过一个可行架构尺寸实现了良好性能”不如“我们通过一个由成千上万个参数组成架构实现了最先进性能”。不可避免地,当高分成

    作者: 初学者7000
    636
    1
  • 深度学习模型结构

    对信息处理分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 深度学习模型结构

    对信息处理分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1146
    2
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    741
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    830
    3
  • AI、机器学习深度学习关系

    作者: andyleung
    1560
    1
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化

    作者: 小强鼓掌
    335
    1
  • 为什么深度强化学习

    移动。这种复杂学习能力,可以帮助 RL 代理理解更复杂环境,并将其状态映射到动作。深度强化学习可与监督机器学习相媲美。该模型生成动作,并根据来自环境反馈调整其参数。然而,不同于传统监督学习深度强化学习会面临一些独特挑战。与模型具有一组标记数据监督学习问题不同,RL

    作者: QGS
    923
    5
  • 深度学习时序图网络

    ),一个通用,有效框架,用于深度学习动态图表示为时间事件序列。由于内存模块和基于图运算符新组合,TGNs能够显著优于以前方法,同时在计算效率上也更高。此外,我们还展示了之前几个用于学习动态图模型可以转换为我们框架具体实例。我们对框架不同组件进行了详细消歧研究,并

    作者: QGS
    763
    1
  • 深度学习之噪声

    Dropout另一个重要方面噪声乘性。如果固定规模加性噪声,那么加了噪声 ϵ 整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘

    作者: 小强鼓掌
    1045
    3