检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard上运行GPU训练作业的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。 ModelArts
训练作业进程被kill 问题现象 用户进程被Kill表示用户进程因外部因素被Kill或者中断,表现为日志中断。 原因分析 CPU软锁 在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况
SFT全参微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
SFT全参微调训练任务 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
er文件,具体请参见训练tokenizer文件说明。 Step2 创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入:
前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。
创建调试训练作业 使用PyCharm ToolKit创建并调试训练作业 使用VS Code创建并调试训练作业 父主题: 使用ModelArts Standard训练模型
通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包
通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包
config_desc String 训练作业参数的描述信息。 create_time Long 训练作业的创建时间。 engine_type integer 训练作业的引擎类型。 engine_name String 训练作业的引擎名称。 engine_id Long 训练作业的引擎ID。 engine_version
模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录
列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 步骤三 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录
训练输出路径被其他作业使用 问题现象 在创建训练作业时出现如下报错:操作失败!Other running job contain train_url: /bucket-20181114/code_hxm/ 原因分析 根据报错信息判断,在创建训练作业时,同一个“训练输出路径”在被其他作业使用。
创建训练作业界面无云存储名称和挂载路径排查思路 问题现象 创建训练作业界面没有云存储名称和挂载路径这两个选项。 原因分析 用户的专属资源池没有进行网络打通,或者用户没有创建过SFS。 处理方法 在专属资源池列表中,单击资源池“ID/名称”,进入详情页。单击右上角“配置NAS VPC”,检查是否开启了NAS
训练业务迁移到昇腾设备场景介绍 场景介绍 本文介绍如何将客户已有的PyTorch训练业务迁移到昇腾设备上运行并获得较好的模型训练效果。华为云ModelArts针对该场景提供了系统化的迁移指导,包括迁移原理、迁移流程以及迁移后的精度调试及性能调优方法介绍。此外,ModelArts提
编译生成so文件的cuda版本与训练作业的cuda版本不一致。 处理方法 编译环境的cuda版本与训练环境不一致,训练作业运行就会报错。例如:使用cuda版本为10的开发环境tf-1.13中编译生成的so包,在cuda版本为9.0训练环境中tf-1.12训练会报该错。 编译环境和训练环境的cuda版本不一致时,可参考如下处理方法:
模型训练高可靠性 训练作业容错检查 训练日志失败分析 训练作业卡死检测 训练作业重调度 设置断点续训练 设置无条件自动重启 父主题: 使用ModelArts Standard训练模型
模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录
SFT全参微调训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
base块:基础配置块 ModelName块:该模型所需配置的参数,如qwen2.5-7b块 样例截图如下: 开始训练测试,具体步骤参考训练性能测试或训练精度测试,根据实际情况决定。 父主题: 训练benchmark工具