内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 无监督时空表示学习的大规模研究

    本文提出了从视频无监督的时空表示学习的大规模研究。借助对四个基于图像的最新框架的统一观点,我们研究了一个简单的目标,可以轻松地将所有这些方法推广到时空。我们的目标是鼓励在同一视频中使用时间上持久的特征,尽管它简单易用,但在以下情况下却表现出色:(i)不同的无监督框架,(ii)预训

    作者: 可爱又积极
    1138
    3
  • 分享图机器学习研究趋势——图嵌入的新框架

    图嵌入的新框架图嵌入是图机器学习的一个长期的研究主题,今年有一些关于我们应该如何学习图表示的新观点出现。GraphZoom: A Multi-level Spectral Approach for Accurate and Scalable Graph Embeddinghttps://openreview

    作者: 初学者7000
    1192
    5
  • 联邦学习中的个性化定制与联邦迁移学习研究

    同的数据分布和任务需求。个性化联邦学习的实现方法包括多任务学习、元学习和模型分层等。 2. 个性化联邦学习的实现方法 a. 多任务学习 多任务学习是一种通过共享模型参数来同时学习多个任务的方法。在联邦学习中,可以通过为每个参与方分配一个任务,从而实现个性化定制。 import

    作者: Y-StarryDreamer
    发表时间: 2024-06-15 23:40:48
    45
    0
  • 深度学习之监督学习算法

    源自这样一个视角,教员或者老师提供目标 y 给机器学习系统,指导其应该做什么。在无监督学习中,没有教员或者老师,算法必须学会在没有指导的情况下让数据有意义。尽管无监督学习和监督学习并非完全没有交集的正式概念,它们确实有助于粗略分类我们研究机器学习算法时遇到的问题。传统地,人们将回归,分类

    作者: 小强鼓掌
    865
    2
  • 【自动泊车】研究生课题规划安排

    文章目录 2021年7月6日 工作计划2021年7月2日会议纪要车位识别自动泊车研究现状国内:视觉信息的自动泊车环境感知系统的研究国外:视觉信息的自动泊车环境感知系统的研究国内外:轨迹跟踪控制技术国内外:位姿估计技术国内外:基于车位角检测的标识线识别方法 【论文速读】AVP-SLAM参考

    作者: ReCclay
    发表时间: 2022-02-21 14:40:29
    714
    0
  • 深度学习应用开发》学习笔记-30

    终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。

    作者: 黄生
    527
    0
  • 深度学习

    深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 油藏监测与预测的机器学习方法研究

    证明了机器学习方法在油藏监测与预测中的有效性。 结论 通过本文的介绍和案例研究,我们可以看到机器学习方法在油藏监测与预测中的潜力和应用。通过合理选择和应用机器学习算法,可以提高油田勘探和生产的效率,并为决策提供可靠的依据。 希望本文对读者对油藏监测与预测的机器学习方法有所启发

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 18:02:35
    5
    0
  • 深度学习框架TensorFlow

    类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief   。Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究  。T

    作者: QGS
    555
    0
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1263
    13
  • 【转载】深度学习与人脑

    深度学习是机器学习的一个子集,它通过接收大量数据并试图从中学习来模拟人脑。在IBM对该术语的定义中,深度学习使系统能够“聚集数据,并以令人难以置信的准确性做出预测。” 然而,尽管深度学习令人难以置信,但IBM尖锐地指出,它无法触及人脑处理和学习信息的能力。深度学习和 DNN(深度

    作者: 乔天伊
    19
    3
  • 分享深度学习未来发展的学习范式-——简化学习

        在深度学习领域, 特别是在NLP(深度学习领域研究最热潮激动人心的领域)中,模型的规模正在不断增长。最新的GPT-3模型有1750亿个参数。把它和BERT比较就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?    按理来说,不会,GPT-3是非常有说

    作者: 初学者7000
    1133
    1
  • 走近深度学习 认识MoXing

    深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。

  • 强化学习中的自适应与迁移学习模型研究综述

    个重要的研究方向。 C. 未来的发展方向 跨领域迁移学习:未来的研究可以进一步探索跨领域的迁移学习方法,实现不同领域任务之间的知识共享和迁移。 多智能体自适应学习:多智能体系统中的自适应学习是一个重要的研究方向,通过智能体之间的协作和信息共享,可以实现更高效的学习和决策。

    作者: Y-StarryDreamer
    发表时间: 2024-05-20 14:48:21
    3
    0
  • 分享图机器学习研究趋势——不断更新的应用

    Networkshttps://openreview.net/pdf?id=Hkx6hANtwH 类似的应用还体现在上面这篇论文中。来自得克萨斯大学奥斯汀分校的作者研究了如何推断像Python或TypeScript此类语言的变量类型。更为具体的,作者给出了一个类型依赖超图(type dependency

    作者: 初学者7000
    1067
    3
  • 《MXNet深度学习实战》—1.2 深度学习框架

    主要通过深度学习框架MXNet来介绍如何实战深度学习算法,该框架融合了命令式编程和符号式编程,在灵活和高效之间取得了非常好的平衡。正如前文所述,各深度学习框架之间有很多相似性,当你深入了解其中一种深度学习框架之后基本上就能举一反三,因此如果你现在还在犹豫学习哪个深度学习框架,那么

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 啥是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: freeborn0601
    9640
    3
  • 深度学习深度前馈网络

           深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数

    作者: 小强鼓掌
    1256
    4
  • 深度学习深度模型中的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    338
    1
  • 深度学习应用开发》学习笔记-01

    人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快

    作者: 黄生
    1139
    5