内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之设计矩阵

    x(2), . . . , x(m)}。这种表示方式并非意味着样本向量 x(i) 和 x(j) 有相同的大小。在监督学习中,样本包含一个标签或目标和一组特征。例如,我们希望使用学习算法从照片中识别物体。我们需要明确哪些物体会出现在每张照片中。我们或许会用数字编码表示,如 0 表示人,1 表示车,2

    作者: 小强鼓掌
    1663
    1
  • 学习文献】云计算中存储数据安全性研究

    而编码速率较高。 基金:教育部首批“新工科”研究与实践项目(教高厅函〔2018〕17号); 湖南省普通高等学校“十三五”专业综合改革试点项目(湘教通〔2016〕276号); 湖南省普通高校校企合作创新创业教育基地(湘教通〔2016〕436号); 湖南省教育厅科学研究项目(课题号:16C0686)

    作者: yidaodao
    1963
    1
  • 深度学习框架有哪些?

    深度学习框架有哪些?各有什么优势?

    作者: 可爱又积极
    759
    6
  • 深度学习与神经科学

    计算机领域中的深度学习与20世纪90年代由认知神经科学研究者提出的大脑发育理论(尤其是皮层发育理论)密切相关。对这一理论最容易理解的是杰弗里·艾尔曼于1996年出版的专著《对天赋的再思考》(Rethinking Innateness)(参见斯拉格和约翰逊以及奎兹和赛杰诺维斯基的表

    作者: 某地瓜
    1231
    1
  • 深度学习入门》笔记 - 12

    学习步长$\alpha$是一个很重要的参数。 如果太小,算法会收敛的很慢。 如果太大,容易造成算法不收敛,甚至发散。 自变量的标准化,和因变量的中心化,是建立深度学习模型常用的数据预处理方法。 他们的好处,是不仅可以让梯度下降法的数值表现的更加稳定,还有助于我们找到合适的初始值和步长。

    作者: 黄生
    272
    1
  • **Mac深度学习环境配置**

    Mac深度学习环境配置安装组合:Anaconda+PyTorch(GPU版)开源贡献:马曾欧,伦敦大学2.1 安装AnacondaAnaconda 的安装有两种方式,这里仅介绍一种最直观的- macOS graphical install。https://www.anaconda

    作者: @Wu
    592
    0
  • 深度学习入门》笔记 - 05

    接下来就是讲线性模型了。线性模型相对比较简单,但是他是学习比较复杂的深度学习模型的一个基础,而且线性模型本身也具有广泛的用途。 这里讲了线性模型中的线性回归模型和logistic模型。线性回归模型用于处理`回归问题`。logistic模型用于处理`分类问题`。 线性回归模型可以写作如下的形式:

    作者: 黄生
    145
    3
  • 深度学习入门》笔记 - 01

    之前学了一个深度学习应用开发,学了一段时间,后来就没学了。 确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是深度学习入门与TensorFlow实践>。 `数(scalar)`是一个数字。 简直是废话。 不过这才刚开始嘛。 多个数字有序

    作者: 黄生
    283
    1
  • 深度学习项目代码阅读建议

    我相信能在深度学习领域精进的人都不会是普通人。   诚然,无论是读教材、读论文还是本篇所说的读代码,这些本身都是一个个人学习能力提升和知识汲取的过程。对于从事深度学习工作的我们而言,arxiv上的论文和GitHub上的代码都无穷尽,关键在于保持学习的劲头,做一名终身学习者。

    作者: @Wu
    967
    1
  • 深度学习训练过程

    一步类似神经网络的随机初始化初值过程,由于第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果。所以深度学习的良好效果在很大程度上归功于第一步的特征学习的过程。 

    作者: QGS
    539
    1
  • 深度学习之函数估计

    可能具有过高的方差),k-折交叉验证算法可以用于估计学习算法 A 的泛化误差。数据集 D 包含的元素是抽象的样本 z(i) (对于第 i 个样本),在监督学习的情况代表(输入,目标)对 z(i) = (x(i), y(i)) ,或者无监督学习的情况下仅用于输入 z(i) = x(i)。该算法返回

    作者: 小强鼓掌
    836
    1
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    345
    1
  • 深度学习之历史小计

    1847)。从 20 世纪 40 年代开始,这些函数近似技术被用于导出诸如感知机的机器学习模型。然而,最早的模型都是基于线性模型。来自包括 Marvin Minsky 的批评指出了线性模型族的几个缺陷,例如它无法学习 XOR 函数,这导致了对整个神经网络方法的抵制。

    作者: 小强鼓掌
    414
    0
  • 深度学习典型模型

    型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难

    作者: 某地瓜
    1673
    1
  • 深度学习之虚拟对抗

    性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么

    作者: 小强鼓掌
    679
    1
  • 深度学习笔记之归纳准则

    较大时,Cramér-Rao 下界(Rao, 1945; Cramér, 1946) 表明不存在均方误差低于最大似然学习的一致估计。因为这些原因(一致性和统计效率),最大似然通常是机器学习中的首选估计。当样本数目小到会过拟合时,正则化策略如权重衰减可用于获得训练数据有限时方差较小的最大似然有偏版本。

    作者: 小强鼓掌
    931
    3
  • 深度学习神经网络

        什么是神经网络    我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。    假设你有一个数据集,它包含了六栋房子的信息。所以,你

    作者: 运气男孩
    656
    2
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    664
    1
  • 深度学习入门》笔记 - 09

    现在我们来尝试迭代多次,看看效果。 从w=0开始 ```python #w初始值给0 x,y=0.5,0.8 w=0;lr=0.5 #lr学习率=0.5 pred=x*w loss=((pred-y)**2)/2 grad=(pred-y)*x print('自变量:'+str(x))

    作者: 黄生
    432
    3
  • 深度学习之浅层网络

    存在一些函数族能够在网络的深度大于某个值 d 时被高效地近似,而当深度被限制到小于或等于 d 时需要一个远远大于之前的模型。在很多情况下,浅层模型所需的隐藏单元的数量是 n 的指数级。这个结果最初被证明是在那些不与连续可微的神经网络类似的机器学习模型中出现,但现在已经扩展到了这些模型。第一个结果是关于逻辑门电路的

    作者: 小强鼓掌
    423
    0