内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 分享深度学习发展的学习范式——混合学习

     这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能

    作者: 初学者7000
    739
    1
  • 深度学习基本概念

    们发现从数据的原始形式直接学得数据表示这件事很难。深度学习是目前最成功的表示学习方法,因此,目前国际表示学习大会(ICLR)的绝大部分论文都是关于深度学习的。深度学习是把表示学习的任务划分成几个小目标,先从数据的原始形式中先学习比较低级的表示,再从低级表示学得比较高级的表示。这样

    作者: 运气男孩
    973
    4
  • 分享深度学习发展的学习范式——混合学习

        这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因

    作者: 初学者7000
    828
    3
  • PyTorch深度学习技术生态

    runtimeONNX Runtime是一种跨平台深度学习训练和推理机加速器,与深度学习框架,可以兼容TensorFlow、Keras和PyTorch等多种深度学习框架。ONNX (Open Neural Network Exchange) 是一种用于表示深度学习模型的开放格式,ONNX定义了一组

    作者: 可爱又积极
    1286
    0
  • 深度学习的现实应用

    语言翻译知之甚少的深度学习研究人员正提出相对简单的机器学习解决方案,来打败世界上最好的专家语言翻译系统。文本翻译可以在没有序列预处理的情况下进行,它允许算法学习文字与指向语言之间的关系。谷歌翻译利用的是大型递归神经网络的堆叠网络。四、自动驾驶汽车谷歌利用深度学习算法使自动驾驶汽车

    作者: 运气男孩
    831
    4
  • 深度学习-语义数据集

    常见的语义分割算法属于有监督学习,因此标注好的数据集必不可少。公开的语义分割数据集有很多,目前学术界主要有三个benchmark(数据集)用于模型训练和测试。第一个常用的数据集是Pascal VOC系列。这个系列中目前较流行的是VOC2012,Pascal Context等类似的

    作者: @Wu
    727
    0
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

    作者: 我的老天鹅
    1890
    10
  • 【转载】深度学习与人脑

    深度学习是机器学习的一个子集,它通过接收大量数据并试图从中学习来模拟人脑。在IBM对该术语的定义中,深度学习使系统能够“聚集数据,并以令人难以置信的准确性做出预测。” 然而,尽管深度学习令人难以置信,但IBM尖锐地指出,它无法触及人脑处理和学习信息的能力。深度学习和 DNN(深度

    作者: 乔天伊
    18
    3
  • 深度学习应用开发》学习笔记-06

    什么是深度深度就是简单的量变。神经网络到深度神经网络,就是每一层的节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代的时候,在研究猫的神经元时发现的,199

    作者: 黄生
    1126
    3
  • 深度学习笔记之理解

            我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习的模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他

    作者: 小强鼓掌
    826
    2
  • 深度学习的模型介绍

    深度神经网络:深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1759
    2
  • 深度学习应用开发》学习笔记-31

    com/data/forums/attachment/forum/202108/04/105156dxvyfdoaeoob1d2w.png) ```python #插播学习一下reshape,总体顺序还是不变,但切分点变了 import numpy as np int_array=np.array([i for

    作者: 黄生
    519
    0
  • 深度学习: 学习率 (learning rate)

           深度学习: 学习率 (learning rate)    作者:liulina603        致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385   深度学习: 学习率 (learning

    作者: 一颗小树x
    发表时间: 2020-12-03 15:53:24
    2517
    0
  • 深度学习的特点

    深度学习区别于传统的浅层学习深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    667
    2
  • 机器学习(八):深度学习简介

    深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

    作者: Lansonli
    发表时间: 2023-02-18 06:02:17
    62
    0
  • 深度学习和层级结构

    语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 深度学习之平滑先验

    用于度量测试样本 x 和每个训练样本 x(i) 有多么相似。近年来深度学习的很多推动力源自研究局部模版匹配的局限性,以及深度学习如何克服这些局限性 (Bengio et al., 2006a)。决策树也有平滑学习的局限性,因为它将输入空间分成和叶节点一样多的区间,并在每个区间使用

    作者: 小强鼓掌
    1194
    1
  • 机器学习深度学习的区别是什么?

    深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 深度学习随机取样、学习

    4-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    4-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可

    作者: 运气男孩
    1443
    5