内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 什么是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: Amber
    11519
    6
  • 深度学习笔记》六

    图像分割是继图像分类和目标检测之后的计算机视觉的第三大任务。 相较于分类和检测,分割的任务粒度更加细化,需要做到逐像素级别的分类。图像分割可分为语义分割和实例分割。 图像分割主要包括语义分割(Semantic Segmentation)和实例分割(Instance Segmentation)。

    作者: 黄生
    发表时间: 2023-12-19 22:49:13
    0
    0
  • 深度学习之动量

    虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian

    作者: 小强鼓掌
    530
    3
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 学习深度学习是否要先学习机器学习

    学习深度学习是否要先学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5964
    23
  • 深度学习之PCA

    确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。

    作者: 小强鼓掌
    541
    1
  • 深度学习的概念

    深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 深度学习学习样本数据的内在规律和表示层次,

    作者: 某地瓜
    1858
    1
  • 深度学习应用开发》学习笔记-01

    人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快

    作者: 黄生
    1139
    5
  • 深度学习之函数估计

    对于简单的训练/测试或训练/验证分割而言太小难以产生泛化误差的准确估计时(因为在小的测试集上,L 可能具有过高的方差),k-折交叉验证算法可以用于估计学习算法 A 的泛化误差。数据集 D 包含的元素是抽象的样本 z(i) (对于第 i 个样本),在监督学习的情况代表(输入,目标)对 z(i)

    作者: 小强鼓掌
    835
    1
  • 深度学习之半监督学习

    深度学习背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    749
    10
  • 深度学习的应用

    计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    657
    1
  • 深度学习的应用

    计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    1523
    2
  • 深度学习数据收集

    深度学习需要大量的数据集,但是现实是只有零星的数据,大家有什么收集数据的经验和经历,还有什么收集数据的好办法

    作者: 初学者7000
    744
    3
  • 深度学习库 JAX

        JAX是一个似乎同时具备Pytorch和Tensorflow优势的深度学习框架。 JAX 是 Google Research 开发的机器学习库,被称为“在 GPU/TPU上运行的具有自动微分功能的Numpy”,该库的核心是类似 Numpy 的向量和矩阵运算。我个人认为,与

    作者: QGS
    7164
    3
  • 生物医学影像自适应全自动深度学习分割网络nnU-net详解

    对特定数据集的调参,没有本质上的改进。其证据是在常见的49个器官分割任务中(包含19个生物医学数据集,包含CT\MRI\电镜3种影像模态),nnU-net的分割性能均名列前茅,且超过了不少算法专家精心设计的深度学习算法。详情请点击博文链接:https://bbs.huaweicloud

    作者: AI资讯
    3380
    34
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4075
    2
  • 深度学习卷积操作

    卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。

    作者: 我的老天鹅
    629
    8
  • 深度学习之Dropout

    Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个

    作者: 小强鼓掌
    1021
    2
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习应用开发》学习笔记-03

    有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,

    作者: 黄生
    1332
    6