检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
邮箱:chaojililin@163.com基于MindSpore1.3.0的图像分类迁移学习本人基于MindSpore1.3.0版本开发图像分类迁移学习(下面是关键步骤的解释说明,具体代码见附件)导入模块:import collectionsimport jsonimport hashlibimport
日志如下,谢谢
对于十二生肖图像分类任务,我们将训练集中的图片输入到GoogLeNet模型中,经过多层Inception模块和其他辅助分类器的学习后,模型会学习到丰富的高层语义特征。在模型顶层,通常采用全局平均池化层后接全连接层,并使用softmax函数输出各个类别的概率分布,从而实现对输入图像的十二生肖类别预测。
们采用梯度下降的方法。损失函数的梯度表示损失函数对各参数求偏导后的向量,损失函数梯度下降的方向,就是是损失函数减小的方向。梯度下降法即沿着损失函数梯度下降的方向,寻找损失函数的最小值,从而得到最优的参数。其中,lr表示学习率,是一个超参数,表征梯度下降的速度。如学习率设置过小,参
决策树通过递归划分样本特征空间并在每个得到的特征空间区域定义局部模型来做预测。决策树方法的优点是易于理解,数据预处理过程比较简单,同时在相对短的时间内就可以在大数据集上得到可行且效果良好的结果。决策树是非常基础的算法,可解释性强,但它缺点也比较明显,对连续性的特征比较难预测。当数据特征关联性比较强时,决策树的表现的
非人工方式进行垃圾分类的趋势,AI技术能否为垃圾分类共享一份力量?目前看来,AI可以在参与链全程提供助力:包括了居民端的智能检测,回收者的自动化以及后端处理厂的智能优化。,终端(回收者)自动化,给小区的垃圾箱配备了智能传感器。这些传感器每天会多次拍摄垃圾桶内部的高分辨率照片,并发
换成文本的技术。从早期的基于模板的方法到严格的统计模型,再到如今的深度模型,语音识别技术已经经历了几代的更迭。 图像识别图像识别是深度学习最成功的应用之一。深度学习在计算机视觉领域的突破发生在2012年,Hinton教授的研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet
rFlow构建深度学习模型,重点关注图像分类与目标检测。TensorFlow是一个强大的开源机器学习框架,它提供了丰富的工具和库,使我们能够轻松地构建和训练深度学习模型。 介绍 深度学习已经在图像处理领域取得了巨大的成功。图像分类和目标检测是深度学习在计算机视觉中的两个重要应用。
%20_blank 分类器的性能 混淆矩阵 混淆矩阵是一张表,这张表通过对比已知分类结果的测试数据的预测值和真实值表来描述衡量分类器的性能。在二分类的情况下,混淆矩阵是展示预测值和真实值四种不同结果组合的表。 多分类问题的混淆矩阵可以帮助你确认错误模式。
很大,但是查看训练集 可以发现灌汤包的训练图片都是多个包子的图,并没有单个包子的图,如下图所示。训练集中没有出现 单个包子的近景图,所以模型没有学习到预测单个包子的能力; (2)第一张预测错误的柿子饼图都是很多个柿子饼堆在一起的图,而训练集中的柿子饼图都是少量几个 柿子饼堆在一起
这是一篇关于度量学习损失函数的综述。检索网络对于搜索和索引是必不可少的。深度学习利用各种排名损失来学习一个对象的嵌入 —— 来自同一类的对象的嵌入比来自不同类的对象的嵌入更接近。本文比较了各种著名的排名损失的公式和应用。深度学习的检索正式的说法为度量学习(ML)。在这个学习范式中,神经网络学习一个嵌
How human classify(1NN)? Step 1: represent the testing data point (x) in the vector space whose elements denote the "features" Step
了模型的分类性能就越好。 AUC(Area Under Curve)被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC作为ROC曲线的具体数值可以直观的评价分类器的好坏,值越大越好。
其实自从2018年三大佬靠深度学习拿了图灵奖之后,基本宣告深度学习容易解决的问题做的差不多了,这两年这个领域没有太大的突破。时至今日,深度学习领域有哪些值得追踪的前沿研究?
"Backend service is not available, please retry later."}请问,部署为在线服务以后,预测的时候出现上述错误是因为什么呢?而且反复点击“重新预测”就可以成功预测了,请问这是为什么呢?
state_dict(), model_path) 我的显卡版本是RTX2060,在Jupyter中,可以使用%%time语句来统计cell的执行时间。实测下来,GPU和CPU训练速度并没有明显差异,个人猜测可能是由于该数据量不大的原因。 测试 整体测试 加载模型,在测试集上评估模型性能
深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到