检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
油田勘探和开发中的数据量庞大且复杂。为了更好地理解油藏的特征和优化生产过程,研究人员和工程师们一直在寻求更高效准确的数据分类和识别方法。近年来,深度学习技术的快速发展为解决这一问题提供了新的可能性。本文将探讨基于深度学习的油藏数据分类与识别方法及其应用。 深度学习在油藏数据分类与识别中的应用:
适当增加训练数据,会提升模型的精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。 标注质量对于最终的模型精度有极
Arts平台上的垃圾分类识别模型,对用户从手机端提交的垃圾图片进行在线识别分类并返回识别结果,调用过程中用到了小程序的云函数功能。 6.2 分类测试 6.3 垃圾分类小提示指南模块实现的功能是根据用户所选择的城市,将云数据库中的数据展示给用户,介绍目前不同城市发布的垃圾分类规则及投放的要求,如下图所示:
在数据标注页面,单击右侧的“标签管理”,在标签管理页,显示全部标签的信息。 修改标签:单击操作列的“修改”按钮,在弹出的对话框中输入修改后的标签名、选择修改后的快捷键,然后单击“确定”完成修改。修改后,之前添加了此标签的音频,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的文本,至少有2种以上的分类,每种分类样本数据数不少20行。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体
完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可
开发者计划 使能开发者基于开放能力进行技术创新 开发支持 专业高效的开发者在线技术支持服务 开发者学堂 云上学习、实验、认证的知识服务中心 开发者活动 开发者实训、热门活动专区 社区论坛 专家技术布道、开发者交流分享的平台 文档下载 AI平台ModelArts文档下载 更多产品信息
完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择
于机器内核数量的worker是一个通用的实践。3.构建网络架构对于大多的真实用例,特别是在计算机视觉中,我们很少构建自己的架构。可以使用已有的不同架构快速解决我们的真实问题。在我们的例子中,使用了流行的名为ResNet的深度学习算法,它在2015年赢得了不同竞赛的冠军,如与计算机
修改已标注的数据 针对“已标注”的文本数据,仅支持删除此文本对象的标签。在“已标注”页签下,在标签名称区域单击标签右上角的叉号,即可删除此文本对象的标签。标签删除后,此文本对象将被呈现至“未标注”页签下。 图3 删除已标注文本的标签 修改标签 针对文本分类的自动学习项目,项目创
图像分类是人工智能(AI)领域的一项重要任务,其目的是将输入图像分配到特定的类别中。随着深度学习的发展,卷积神经网络(CNN)已成为图像分类任务的主流方法。本篇文章将带您快速入门图像分类,并结合代码实例详细讲解基于PyTorch的图像分类模型的构建过程。基础知识图像分类的核心概念
能获得最大利益的习惯性行为。和标准的监督式学习之间的区别在于,它并不需要出现正确的输入/输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到平衡。在现实生活中,机器学习技术主要体现在以下几个部分: 数据挖掘(Data
【下线公告】华为云ModelArts自动学习模块的文本分类功能下线公告 华为云计划于2024/12/06 00:00(北京时间)将AI开发平台ModelArts自动学习模块的文本分类功能正式下线。 下线范围 下线Region:华为云全部Region。 下线影响 ModelArts自动学习-文本分类正式下线后,
每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。
构建一个字母ABC的手写识别网络, 要求给出算法误差收敛曲线,所给程序要有图片导入接口。 其中A,B,C都代表label,三个文件夹存在具体的图片。只要是这样类型的,直接套下面模板。 import os import cv2
修改标签:在需要修改的标签的“操作”列,单击“修改”,输入修改后的标签,单击“确定”即可。 删除标签:选择对应的标签,单击操作列的“删除”,在弹出的“删除标签”对话框中单击“确定”即可删除对应的标签。 删除后无法再恢复,请谨慎操作。 继续运行 完成数据的确认之后,返回自动学习的页面,在数据
4、训练分类器 我使用的分类器是svm,用经典的1 vs all方法实现多类分类。对每一个类别都训练一个二元分类器。训练好后,对于待分类的feature vector,使用每一个分类器计算分在该类的可能性,然后选择那个可能性最高的类别作为这个feature vector的类别。 训练二元分类器
zhuqiqian1@huawei.com
邮箱:mc5534068@163.com
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性。随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来