已找到以下 10000 条记录
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • ModelArts自动学习之手势识别

    型的图片数据,导致失败,以下采用“自动学习”的方法,并且成功训练出了模型能进行手势识别,无需按照繁琐的官方教程按部就班地进行实验,且不会遇到其他突发情况和问题。 以下介绍自动学习的过程: 1.进入自动学习界面,填写参数,将数据集输入位置和输出位置填写桶里面

    作者: yd_255089284
    发表时间: 2023-11-11 09:31:06
    80
    0
  • 深度学习应用开发》学习笔记-30

    终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。

    作者: 黄生
    525
    0
  • 行业类 OCR

    行业类(Domain OCR),支持物流电子面单识别、保险单识别、财务报表识别等多种行业特定类型图片的结构化信息提取和识别,助力行业自动化效率提升。 行业类(Domain OCR),支持物流电子面单识别、保险单识别、财务报表识别等多种行业特定类型图片的结构化信息提取和识别,助力行业自动化效率提升。 立即抢购

  • 深度学习与图像识别:原理与实践》—3.4 模型参数调优

    4 模型参数调优机器学习方法(深度学习是机器学习中的一种)往往涉及很多参数甚至超参数,因此实践过程中需要对这些参数进行适当地选择和调整。本节将以KNN为例介绍模型参数调整的一些方法。这里的方法不局限于图像识别,属于机器学习通用的方法。本节的知识既可以完善读者的机器学习知识体系,也可以

    作者: 华章计算机
    发表时间: 2019-07-24 13:03:02
    2175
    0
  • 从MindSpore手写数字识别学习深度学习

    从MindSpore手写数字识别学习深度学习 从MindSpore手写数字识别学习深度学习 时间:2020-11-23 16:08:48 深度学习作为机器学习分支之一,应用日益广泛。语音识别、自动机器翻译、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每

  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1037
    2
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    176
    1
  • 《深入理解AutoML和AutoDL:构建自动化机器学习深度学习平台》 —1.4.3 语音识别

    1.4.3 语音识别我们的目标不仅仅是让计算机有“看”和“语言”的能力,还要让计算机拥有“听”和“说”的能力,因此还需要语音识别(Voice Recognition)。语音识别的目标是将一段自然语言通过声学信号的形式传给计算机,由计算机理解并且做出回应。语音识别系统主要包含特征提

    作者: 华章计算机
    发表时间: 2019-11-15 07:19:23
    3289
    0
  • 学习笔记 - 英特尔的车牌识别算法

    资料有点旧,不过作为学习资料,是个不错的选择,毕竟是来自工业界的实践经验。车牌识别是一个老生常谈的话题,在工业界已经得到广泛应用。当深度学习在各种视觉识别任务上刷新更高精度的时候,却常常被认为计算量远大于传统方法。Intel公司计算机视觉组的工程师发布了一篇论文,揭示了自家已经商

    作者: RabbitCloud
    1201
    2
  • 深度学习】嘿马深度学习笔记第1篇:深度学习基本概要【附代码文档】

    掌握神经网络图像相关案例 深度学习介绍 1.1 深度学习与机器学习的区别 学习目标 目标 知道深度学习与机器学习的区别 应用 无 1.1.1 区别 1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识 深度学习通常由多个层组成

    作者: 程序员一诺python
    发表时间: 2024-08-16 17:03:45
    22
    0
  • 发票识别与验真 - 文字识别 OCR

    发票识别与验真 方案概述 资源和成本规划 实施步骤

  • 深度学习介绍

    提取环节。 深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言领域 1.1.2 深度学习应用场景 图像识别 物体识别场景识别车型识别人脸检测跟踪人脸关键点定位人脸身份认证自然语言处理技术

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 深度学习随机取样、学习

    易收敛。在语音识别任务中,前期可以选择较小的批量块,比如64到256个样本,而后期换用较大的批量块,比如1024-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    易收敛。在语音识别任务中,前期可以选择较小的批量块,比如64到256个样本,而后期换用较大的批量块,比如1024-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的

    作者: 运气男孩
    1443
    5
  • 深度学习笔记之表示学习

    轮具有简单的几何形状,但它的图像可能会因场景而异,如落在车轮上的阴影、太阳照亮的车轮的金属零件、汽车的挡泥板或者遮挡的车轮一部分的前景物体等等。        解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation

    作者: 小强鼓掌
    854
    1
  • 通用文字识别_通用文本识别_【免费】_OCR_在线文字识别

    通用文字识别免费试用 通用文字识别支持表格识别、文档识别、网络图片识别、手写文字识别、智能分类识别、健康码识别、核酸检测记录识别等任意格式图片上文字信息的自动化识别,自适应分析各种版面和表格,快速实现各种文档电子化。 通用OCR功能介绍 通用表格识别 提取表格内的文字和所在行列位

  • 深度学习修炼(一)——从机器学习转向深度学习

    于颜料来说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中的

    作者: ArimaMisaki
    发表时间: 2022-08-08 16:45:09
    244
    0
  • 【转载】深度学习与人脑

    深度学习是机器学习的一个子集,它通过接收大量数据并试图从中学习来模拟人脑。在IBM对该术语的定义中,深度学习使系统能够“聚集数据,并以令人难以置信的准确性做出预测。” 然而,尽管深度学习令人难以置信,但IBM尖锐地指出,它无法触及人脑处理和学习信息的能力。深度学习和 DNN(深度

    作者: 乔天伊
    18
    3
  • 深度学习学习路线

    经网络的基本结构和原理对于深度学习学习非常重要。 推荐教程: 《神经网络与深度学习》(Neural Networks and Deep Learning)(英)Michael Nielsen 著 三、进阶学习 1.深度学习模型 深度学习模型是深度学习中的核心,包括卷积神经网络、

    作者: 赵KK日常技术记录
    发表时间: 2023-06-24 17:11:50
    5
    0