已找到以下 10000 条记录
  • 深度学习与图像识别:原理与实践》—2.3.3 获取Numpy属性

    2.3.3 获取Numpy属性首先,我们通过Numpy中的一个方法arange(n),生成0到n-1的数组。比如,我们输入np.arange(15),可以看到返回的结果是array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1

    作者: 华章计算机
    发表时间: 2019-07-24 20:14:12
    5543
    0
  • ModelArts自动学习之手势识别

    型的图片数据,导致失败,以下采用“自动学习”的方法,并且成功训练出了模型能进行手势识别,无需按照繁琐的官方教程按部就班地进行实验,且不会遇到其他突发情况和问题。 以下介绍自动学习的过程: 1.进入自动学习界面,填写参数,将数据集输入位置和输出位置填写桶里面

    作者: yd_255089284
    发表时间: 2023-11-11 09:31:06
    80
    0
  • 深度学习深陷困境!

    能够信任的 AI 绝非易事。随着时间的推移,我们将意识到,为了构建值得信赖的人工智能,深度学习只是其中很小的一部分。深度学习本质上是一种识别模式的技术。如果我们只需要粗略的结果,那么应用深度学习的效果非常好。这里的粗略结果是指任务本身风险低,且不要求最优结果。举个例子,给照片打标签。比如有一天,我让

    作者: 星恒
    250
    3
  • 深度学习应用开发》学习笔记-30

    终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。

    作者: 黄生
    527
    0
  • 深度学习笔记之表示学习

    轮具有简单的几何形状,但它的图像可能会因场景而异,如落在车轮上的阴影、太阳照亮的车轮的金属零件、汽车的挡泥板或者遮挡的车轮一部分的前景物体等等。        解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation

    作者: 小强鼓掌
    856
    1
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1264
    13
  • 深度学习与图像识别:原理与实践》—3.4 模型参数调优

    4 模型参数调优机器学习方法(深度学习是机器学习中的一种)往往涉及很多参数甚至超参数,因此实践过程中需要对这些参数进行适当地选择和调整。本节将以KNN为例介绍模型参数调整的一些方法。这里的方法不局限于图像识别,属于机器学习通用的方法。本节的知识既可以完善读者的机器学习知识体系,也可以

    作者: 华章计算机
    发表时间: 2019-07-24 21:03:02
    3722
    0
  • 深度学习的现实应用

    深度学习的现实应用近年来掀起的深度学习革命已经深刻地改变了诸多应用领域,并将在越来越多的领域取得成功。其中最广为人知的领域包括自动语音识别、图像识别、自然语言理解及很多其他交叉领域(如医疗、生物、金融等)一、语音识别在语音识别和智能语音助手领域,我们可以利用深度神经网络开发出更准

    作者: 运气男孩
    832
    4
  • AI前沿——深度学习技术

    方法。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构市值不断改善自身的性能的学科,简单地说,机器学习就是通过算法,使得机器能从大量的历史数据中学习规律,从而对新的样本做智能识别或预测未来。

    作者: 运气男孩
    431
    2
  • 开通文字识别服务 - 文字识别 OCR

    开通文字识别服务 OCR服务提供的开通方式有以下两种,用户可以任选其一进行开通服务。 按需计费开通服务 进入文字识别官网主页,单击“立即使用”,进入文字识别控制台。 在“总览”页面,选择需要使用的服务,执行开通操作,默认的计费方式采用按需计费。 图1 服务开通 服务开通成功后,开通状态将显示为“已开通”。

  • PAN++:精确高效的任意形状文本检测与识别

    本。对于文本识别任务,作者提出了一个不规则文字特征提取器Masked RoI和一个基于注意力机制的轻量级识别头。Masked RoI是一个用于为任意形状的文本提取固定大小的特征块的RoI提取器,而轻量级识别头仅包含两层LSTM和两层多头注意力,如图6所示。 图6 识别头实现细节对

    作者: 可爱又积极
    942
    1
  • 深度学习笔记之应用

          深度学习对语音识别产生了巨大影响。语音识别在 20 世纪 90 年代得到提高后,直到约 2000 年都停滞不前。深度学习的引入 (Dahl et al., 2010; Deng et al.,2010b; Seide et al., 2011; Hinton et al

    作者: 小强鼓掌
    624
    0
  • 基于深度学习的声纹识别介绍:以ECAPA-TDNN 为例

    作者: Tianyi_Li
    发表时间: 2022-01-09 16:01:03
    2529
    0
  • 深度学习与图像识别:原理与实践》—2.3.11 Numpy数组比较

    2.3.11 Numpy数组比较Numpy有一个强大的功能是数组或矩阵的比较,数据比较之后会产生boolean值。示例代码如下:import numpy as npmatrix = np.array([ [5, 10, 15],[20, 25, 30],[35, 40, 45]])m

    作者: 华章计算机
    发表时间: 2019-07-24 20:30:16
    3140
    0
  • 深度学习与图像识别:原理与实践》—2.3.4 Numpy数组索引

    2.3.4 Numpy数组索引Numpy支持类似list的定位操作,示例代码如下:import numpy as npmatrix = np.array([[1,2,3],[20,30,40]])print(matrix[0,1])得到的结果是2。上述代码中的matrix[0,1

    作者: 华章计算机
    发表时间: 2019-07-24 20:16:25
    3181
    0
  • 深度学习深度前馈网络

           深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数

    作者: 小强鼓掌
    1257
    4
  • 文字识别的监控指标 - 文字识别 OCR

    文字识别的监控指标 功能说明 本节定义了文字识别服务上报云监控服务的监控指标的命名空间,监控指标列表和维度定义,用户可以通过云监控服务提供管理控制台或API接口来检索文字识别服务产生的监控指标和告警信息。 命名空间 SYS.OCR 监控指标详情 表1 OCR支持的监控指标 指标ID

  • 深度学习的现实应用

    Transformers)模型,采用迁移学习和微调的方法,进一步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融

    作者: 角动量
    2054
    4
  • EI企业智能开发者课程

  • 《深入理解AutoML和AutoDL:构建自动化机器学习深度学习平台》 —1.4.3 语音识别

    1.4.3 语音识别我们的目标不仅仅是让计算机有“看”和“语言”的能力,还要让计算机拥有“听”和“说”的能力,因此还需要语音识别(Voice Recognition)。语音识别的目标是将一段自然语言通过声学信号的形式传给计算机,由计算机理解并且做出回应。语音识别系统主要包含特征提

    作者: 华章计算机
    发表时间: 2019-11-15 15:19:23
    4820
    0