检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
年,短短的六年时间里,深度学习所需的计算量增长了 300,000%。然而,与开发算法相关的能耗和碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻的问题。 针对这一问题,哥本哈根大学计算机科学系的两名学生,协同助理教授 一起开发了一个的软件程序,它可以计算和预测训练深度学习模型的能源消耗和二氧化碳排放量。 网址:
成分学习 成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。 迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以
Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0
为模型的深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联的图的深度而非计算图的深度记为一种模型的深度。值得注意的是,后者用来计算表示的计算图可能比概念图要深得多。鉴于这两种观点的共存,一般在一个模型有多深才算作“深度”模型上并没有达成共识。不过一般深度学习指的是比传
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
一过程很慢。 •计算能力:深度神经网络(DNN)需要高度先进的计算机基础设施,通常是具有大量图形处理单元(GPU)的高性能计算(HPC)系统,这些系统尤其擅长深度学习所需的计算类型。在过去,这种水平的硬件对于大多数组织来说成本费用太高。然而,基于云计算的机器学习服务的增长意味着组
落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等
这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的
终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。
说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```
字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。 如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下
闭解。这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定
那怎么做归一化呢,方法比较简单,就是 (特征值 - 特征值最小者)/(特征值最大值 - 特征值最小者) 这样归一化后的值,范围在 [0,1]之间。 标签值是不需要做归一化的哦 放一下有修改的代码,以及训练的结果: ```python #做归一化,对列index是0到11的特征值做归一化
这里用的损失函数是采用均方差(Mean Square Error MES),还有一个是交叉熵(cross-entropy)这个tf都提供了方法,这样写:loss_function=tf.reduce_mean(tf.squre(y-pred))这里pred是一个节点,就是调用模型
从清华镜像下载python3的anaconda,然后安装anaconda,安装后,会用到他的prompt和jupyter notebook. 然后设置anaconda的源为清华镜像,安装tensorflow。可安装不带gpu的。教学够用了。这里版本是1.2. 安装好之后,做一个简
字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。 如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
例如,数字 “8’’ 形状的流形在大多数位置只有一维,但在中心的相交处有两维。如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
和许多研究者都在努力摆脱符号处理。深度学习的愿景似乎并不以科学为基础,而是源自某种历史遗恨:智能行为纯粹来自海量数据和深度学习的融合。常见的计算机和软件通过定义一组专用于特定工作的符号处理规则来解决难题,例如在文字处理器中编辑文本或在电子表格中执行计算,而神经网络却通过统计近似值和从样本中学习来解决难题
2、ImageNet Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。