检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。
这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的
本质上即为每个类别创建一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每
从整个机器学习的任务划分上来看,机器学习可以分为有监督学习、无监督学习和半监督学习及强化学习。图像、文本等深度学习的应用都属于有监督学习范畴。自编码器和生成式对抗网络可以算在无监督深度学习范畴内。最后就剩下强化学习了。强化学习发展到现在,早已结合了神经网络迸发出新的活力,强化学习结合深度学习已经形成了深度强化学习(Deep
前言 微博作为全球领先的中文广场社交平台,拥有海量用户与数据。在从海量数据中挖掘有价值的信息,为业务赋能的过程中,微博的推荐算法经历了数次升级换代,积累了许多经验。今天跟大家分享下,在此过程中遇到的问题,并且在长期改进与积累的过程中,微博机器学习平台的演进过程,以及当前架构如
为了快速迭代,大家是不是常常直接人工去清洗这些“脏数据”?但数据规模上来了咋整?有没有一种方法能够自动找出哪些错误标注的样本呢?基于此,本文尝试提供一种可能的解决方案——置信学习。 本文的组织架构是:
深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到
变体3>深度强化学习综述:从AlphaGo背后的力量到学习资源分享4>从FPS到RTS,一文概述游戏人工智能中的深度学习算法5>视觉问答全景概述:从数据集到技术方法6>神经风格迁移研究概述:从当前研究到未来方向7>从语言学到深度学习NLP,一文概述自然语言处理8>迁移学习全面概述
机器学习和深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习和深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更
深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多
TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief 。Tensorflow拥有多层级结构,可部
及展望,希望能够起到抛砖引玉的作用。 01实时计算平台实践 1. 网易实时计算平台:Sloth 网易的实时计算平台Sloth译成中文是树懒的意思,继承了网易喜欢用动物系命名大数据组件的风格,如果你看过《疯狂动物城》,一定会对剧中的flash印象深刻。Sloth平台的建设
络的基本结构和原理对于深度学习的学习非常重要。 推荐教程: 《神经网络与深度学习》(Neural Networks and Deep Learning)(英)Michael Nielsen 著 三、进阶学习 1.深度学习模型 深度学习模型是深度学习中的核心,包括卷积神经网络、循环
那怎么做归一化呢,方法比较简单,就是 (特征值 - 特征值最小者)/(特征值最大值 - 特征值最小者) 这样归一化后的值,范围在 [0,1]之间。 标签值是不需要做归一化的哦 放一下有修改的代码,以及训练的结果: ```python #做归一化,对列index是0到11的特征值做归一化
这里用的损失函数是采用均方差(Mean Square Error MES),还有一个是交叉熵(cross-entropy)这个tf都提供了方法,这样写:loss_function=tf.reduce_mean(tf.squre(y-pred))这里pred是一个节点,就是调用模型
从清华镜像下载python3的anaconda,然后安装anaconda,安装后,会用到他的prompt和jupyter notebook. 然后设置anaconda的源为清华镜像,安装tensorflow。可安装不带gpu的。教学够用了。这里版本是1.2. 安装好之后,做一个简
房价的tf2版本,有一些变化。 1是直接使用sklearn.preprocessing里的scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试的数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散的操作 代码如下: 最
卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。
Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个