已找到以下 10000 条记录
  • 深度学习核心技术精讲100篇(三十二)-网易实时数仓实战应用

    及展望,希望能够起到抛砖引玉的作用。 01实时计算平台实践 1. 网易实时计算平台:Sloth 网易的实时计算平台Sloth译成中文是树懒的意思,继承了网易喜欢用动物系命名大数据组件的风格,如果你看过《疯狂动物城》,一定会对剧中的flash印象深刻。Sloth平台的建设

    作者: 格图洛书
    发表时间: 2021-11-18 15:59:27
    621
    0
  • 机器学习中文资源概览

    变体3>深度强化学习综述:从AlphaGo背后的力量到学习资源分享4>从FPS到RTS,一文概述游戏人工智能中的深度学习算法5>视觉问答全景概述:从数据集到技术方法6>神经风格迁移研究概述:从当前研究到未来方向7>从语言学到深度学习NLP,一文概述自然语言处理8>迁移学习全面概述

    作者: Smy1121
    发表时间: 2019-07-09 15:02:46
    6122
    0
  • 深度学习笔记之表示学习

    解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为

    作者: 小强鼓掌
    854
    1
  • 深度学习入门》笔记 - 28

    batch_size=100,validation_data=(test_scaled_x,test_centered_y)) #可视化误差变化情况 # 中文显示乱码... 不必在意这些细节:( %config InlineBackend.figure_format='retina' import

    作者: 黄生
    32
    5
  • 华为云论文被人工智能顶级期刊IEEE TPAMI接收

    思路。 受益于深度学习技术的突破,图像分类、物体检测等传统计算机视觉任务的精度也得到了大幅度的提升,但是由于深度学习模型的复杂性,目前关于深度学习的理论并不完善。可解释的深度学习模型,以及深度学习模型与人工先验的结合是当前学术界重点研究的前沿方向,对于提升深度学习模型的可靠性和泛化能力具有重要的意义。

  • 深度强化学习

    深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多

    作者: QGS
    465
    1
  • 迁移学习 - 网络智能体

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

  • 深度学习的华为实践之路

    来自华为云BU的技术规划负责人方帆给大家介绍了华为AI技术储备现状,以及华为深度学习技术在公司内部的创新与实践。

    播放量  24143
  • 深度学习框架TensorFlow

        TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief   。Tensorflow拥有多层级结构,可部

    作者: QGS
    555
    0
  • 深度学习应用开发》学习笔记-08

    从清华镜像下载python3的anaconda,然后安装anaconda,安装后,会用到他的prompt和jupyter notebook. 然后设置anaconda的源为清华镜像,安装tensorflow。可安装不带gpu的。教学够用了。这里版本是1.2. 安装好之后,做一个简

    作者: 黄生
    1132
    3
  • 深度学习应用开发》学习笔记-14

    这里用的损失函数是采用均方差(Mean Square Error MES),还有一个是交叉熵(cross-entropy)这个tf都提供了方法,这样写:loss_function=tf.reduce_mean(tf.squre(y-pred))这里pred是一个节点,就是调用模型

    作者: 黄生
    625
    2
  • 深度学习应用开发》学习笔记-29

    房价的tf2版本,有一些变化。 1是直接使用sklearn.preprocessing里的scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试的数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散的操作 代码如下: 最

    作者: 黄生
    767
    3
  • 深度学习应用开发》学习笔记-25

    那怎么做归一化呢,方法比较简单,就是 (特征值 - 特征值最小者)/(特征值最大值 - 特征值最小者) 这样归一化后的值,范围在 [0,1]之间。 标签值是不需要做归一化的哦 放一下有修改的代码,以及训练的结果: ```python #做归一化,对列index是0到11的特征值做归一化

    作者: 黄生
    857
    3
  • 深度学习框架MindSpore介绍

    了横向联邦学习、纵向联邦学习、联邦迁移学习以及联邦强化学习等方法及对应的框架。端侧推理、迁移学习和联邦学习属于端云协同的不同阶段1 编程简单MindSpore函数式可微分编程架构可以让用户聚焦模型算法数学原生表达。资深的深度学习开发者都体会过手动求解的过程,不仅求导过程复杂,结果

    作者: 运气男孩
    877
    2
  • 学习目标 - 云客服

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

  • 深度学习深度模型中的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    337
    1
  • 学习笔记-如何提升深度学习性能?

    特征选择 f. 重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标

    作者: RabbitCloud
    631
    1
  • 学习任务 - 教育

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

  • Maven学习总结(四)——Maven核心概念

    这三套生命周期分别是: Clean Lifecycle 在进行真正的构建之前进行一些清理工作。Default Lifecycle 构建的核心部分,编译,测试,打包,部署等等。Site Lifecycle 生成项目报告,站点,发布站点。   再次强调一下它们是相互独立的,你可以仅

    作者: 轻狂书生FS
    发表时间: 2020-11-28 15:08:56
    1958
    0
  • 分享深度学习未来发展的学习范式-——简化学习

        在深度学习领域, 特别是在NLP(深度学习领域研究最热潮激动人心的领域)中,模型的规模正在不断增长。最新的GPT-3模型有1750亿个参数。把它和BERT比较就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?    按理来说,不会,GPT-3是非常有说

    作者: 初学者7000
    1133
    1