内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之机器学习的挑战

    论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误差期望。这里,期望取值自我们期望系统在现实从输入分布采样得到的不同可能值。通常,我

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习的挑战

    论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误差期望。这里,期望取值自我们期望系统在现实从输入分布采样得到的不同可能值。通常,我

    作者: 小强鼓掌
    516
    2
  • 分享深度学习算法

    GR推荐原因这是第一篇关于基于深度学习的立体匹配任务的综述文章,以往关于立体匹配的综述文章多基于传统方法,或者年代已久。这篇综述文章主要总结了过去6年发表在主要会议和期刊上的150多篇深度立体匹配论文,可以称得上方法最新,分类最全,概括最广。在论文中,作者首先介绍了深度立体匹配网络的常用架

    作者: 初学者7000
    951
    3
  • 深度学习库 JAX

        JAX是一个似乎同时具备Pytorch和Tensorflow优势的深度学习框架。 JAX 是 Google Research 开发的机器学习库,被称为“在 GPU/TPU上运行的具有自动微分功能的Numpy”,该库的核心是类似 Numpy 的向量和矩阵运算。我个人认为,与

    作者: QGS
    7164
    3
  • 深度学习之过拟合

    算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。

    作者: 小强鼓掌
    334
    1
  • 深度学习应用开发》学习笔记-12

    数据不是收集的,是自己生成的,好吧~一个简单的例子学习用的没关系%matplotlib inline这个是为了让在jupyter在浏览器里能够显示图像。生成y=2x+1的随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1

    作者: 黄生
    1024
    2
  • 深度学习应用开发》学习笔记-26

    训练模型跑出来了后,要使用,但是我们没有数据了,因为数据都拿去训练了。 所以课程,随机挑了一条训练数据来应用到模型里来使用。 这样是不好的,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到的知识,来做没做过的题。 那比较好的做法呢,是有一些数据,把这些数据分一分,

    作者: 黄生
    826
    3
  • 深度学习应用开发》学习笔记-13

    Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0

    作者: 黄生
    456
    0
  • 深度学习之噪声

    ϵ 的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化的主要目的是改善优化,但噪声具有正则化的效果,有时没必要再使用Dropout。

    作者: 小强鼓掌
    1043
    3
  • 深度学习VGG网络

    代替AlexNet的较大卷积核(11x11,7x7,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG,使用了3个3x3

    作者: 我的老天鹅
    579
    16
  • 深度学习应用开发》学习笔记-02

    导论里面说了人工智能用来下围棋打游戏,已经完全超越了人类,但是那又怎么样呢?还能不能做点更有意义的事情?探索宇宙,非常有意义吧!通过人工智能在天量的天文探测数据挖掘到一个小版的**。然后回到我们日常的社会生活之中,语音处理,比如语音输入,生活助理,拨打广告推销电话等等。图像处理。还有计算机写新闻稿,

    作者: 黄生
    1352
    3
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习深度前馈网络

    被称为第二层 (second layer),以此类推。链的全长称为模型的深度 (depth)。正是因为这个术语才出现了 ‘‘深度学习’’ 这个名字。前馈网络的最后一层被称为输出层 (output layer)。在神经网络训练的过程,我们让 f(x) 去匹配 f∗(x) 的值。训练数据为我们提供了在不同训练点上取值的、含有噪声的

    作者: 小强鼓掌
    1256
    4
  • 深度学习应用开发》学习笔记-27

    用matplot将列表值画出来,调用非常简单 plt.plot(loss_list) 横坐标是列表的索引,纵坐标是列表值,也就是loss值。 可以看到,曲线在收敛了,还有下降空间,但是空间越来越小,抠一点出来也越来难, 所以我就适可而止,跑10轮就不跑了。 代码如下: ```python plt

    作者: 黄生
    825
    2
  • 深度学习数据收集

    深度学习需要大量的数据集,但是现实是只有零星的数据,大家有什么收集数据的经验和经历,还有什么收集数据的好办法

    作者: 初学者7000
    744
    3
  • 深度学习应用开发》学习笔记-06

    什么是深度深度就是简单的量变。神经网络到深度神经网络,就是每一层的节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代的时候,在研究猫的神经元时发现的,199

    作者: 黄生
    1126
    3
  • 深度学习算法深度信念网络(Deep Belief Networks)

    引言 深度学习是近年来人工智能领域的热门话题,它在图像识别、自然语言处理和推荐系统等任务取得了显著的成就。深度信念网络(Deep Belief Networks,DBN)作为深度学习算法的一种,被广泛应用于无监督学习和特征学习任务。本文将介绍深度信念网络的原理、结构和应用,并探讨其在深度学习领域的潜力。

    作者: 皮牙子抓饭
    发表时间: 2023-09-21 09:15:50
    67
    1
  • 深度学习之PCA

    要性质。它是消除数据未知变动因素的简单表示实例。在PCA,这个消除是通过寻找输入空间的一个旋转(由 W 确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。

    作者: 小强鼓掌
    541
    1
  • 深度学习之动量

    虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian

    作者: 小强鼓掌
    530
    3
  • 深度学习——常用评价指标

    识别出来的图片中,True positives所占的比率。也就是本假设,所有被识别出来的飞机,真正的飞机所占的比例。    Recall 是测试集中所有正样本样例,被正确识别为正样本的比例。也就是本假设,被正确识别出来的飞机个数与测试集中所有真实飞机的个数的比值。    Precision-recall

    作者: QGS
    781
    3