检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1.1.3 深度学习在介绍深度学习之前首先需要了解下神经网络,神经网络是机器学习算法中的一个重要分支,通过叠加网络层模拟人类大脑对输入信号的特征提取,根据标签和损失函数的不同,既可以做分类任务,又可以做回归任务。我们知道在机器学习的大部分算法中,特征提取一般都是手动构造的,这部分
识别出来的图片中,True positives所占的比率。也就是本假设中,所有被识别出来的飞机中,真正的飞机所占的比例。 Recall 是测试集中所有正样本样例中,被正确识别为正样本的比例。也就是本假设中,被正确识别出来的飞机个数与测试集中所有真实飞机的个数的比值。 Precision-recall
y.uint8,uint8的取值范围是0-255, 这个可能就是所谓的256位图吧? 每张图片会有自己的标签,就是表示这张图片是数字0-9中的哪个。 另外用reshape重整了一下图像,比较有趣 以下为Notebook代码 ```python print(train_images
论上如此——在实践中也很鲁棒但可能会遇到数值问题)。用于非凸损失函数的随机梯度下降没有这种收敛性保证,并且对参数的初始值很敏感。对于前馈神经网络,将所有的权重值初始化为小随机数是很重要的。偏置可以初始化为零或者小的正值。这种用于训练前馈神经网络以及几乎所有深度模型的迭代的基于梯度
通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误
通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误
计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和DBN引入到语音识别声学模型训练中,并且在
计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和DBN引入到语音识别声学模型训练中,并且在
要性质。它是消除数据中未知变动因素的简单表示实例。在PCA中,这个消除是通过寻找输入空间的一个旋转(由 W 确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。
论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误差期望。这里,期望取值自我们期望系统在现实中从输入分布中采样得到的不同可能值。通常,我
论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误差期望。这里,期望取值自我们期望系统在现实中从输入分布中采样得到的不同可能值。通常,我
JAX是一个似乎同时具备Pytorch和Tensorflow优势的深度学习框架。 JAX 是 Google Research 开发的机器学习库,被称为“在 GPU/TPU上运行的具有自动微分功能的Numpy”,该库的核心是类似 Numpy 的向量和矩阵运算。我个人认为,与
虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian
本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂
constant([3,9,22,60,8,9]) print(tf.argmax(A).numpy()) #二维数组 axis轴为0时,在每列中取值最大者,结果长度为列数。 B=tf.constant([[3,20,33,99,11], [2,99,33,12,3], [14,90,1
一定的限度才会有所反应,并向后输出。这就好像你和一个小朋友好好说话,他却像没听到一样,而你揪着他的耳朵和他说的时候,他就能听进去,并在行动中能做到。于是根据这个又做了一个激活函数。常见的激活函数,一个是s型,S的腰是0.5还有一个修正线性单元激活函数简称为relu这个计算很简单,
Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0
被称为第二层 (second layer),以此类推。链的全长称为模型的深度 (depth)。正是因为这个术语才出现了 ‘‘深度学习’’ 这个名字。前馈网络的最后一层被称为输出层 (output layer)。在神经网络训练的过程中,我们让 f(x) 去匹配 f∗(x) 的值。训练数据为我们提供了在不同训练点上取值的、含有噪声的
一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每个通道只有0或1,以P
上一节训练不出结果,都是nan的原因找到了,就是因为特征数据没有做归一化,那归一化是个什么概念呢?这里有一个很好的例子,做一道菜,准备好材料鸭、笋、....盐、酱油...水,再加上烹饪火候,可以做出一道菜。上面做菜的每一个要素,都可以看做一个特征变量,而重量可以看做是特征变量的值,比如鸭肉xxg