内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习——常用评价指标

    识别出来的图片中,True positives所占的比率。也就是本假设,所有被识别出来的飞机,真正的飞机所占的比例。    Recall 是测试集中所有正样本样例,被正确识别为正样本的比例。也就是本假设,被正确识别出来的飞机个数与测试集中所有真实飞机的个数的比值。    Precision-recall

    作者: QGS
    784
    3
  • 认识深度学习

    中找到相关性和模式。 深度学习是一种特殊的机器学习,在2012年,几位计算机科学家就这个主题发表论文时表明机器学习将变得更加流行,其见解是“深刻的”,因为它通过许多不同的层来处理数据。例如,正在接受计算机视觉培训的深度学习系统可能会首先学会识别出现在图像的物体边缘。这些信息被传

    作者: 建赟
    1845
    2
  • 浅谈深度学习

    化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。深度学习定义深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归深度学习分类:有监督学习方法——深度前馈网络、卷积神

    作者: QGS
    39
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6643
    0
  • 深度学习之参数范数惩罚

    ∈ [0, ∞) 是权衡范数惩罚项 Ω 和标准目标函数 J(X; θ) 相对贡献的超参数。将 α 设为 0 表示没有正则化。α 越大,对应正则化惩罚越大。当我们的训练算法最小化正则化后的目标函数 J˜ 时,它会降低原始目标 J 关于训练数据的误差并同时减小参数 θ 的规模(或在某

    作者: 小强鼓掌
    841
    0
  • 深度学习算法的长短期记忆网络(Long Short-Term Memory)

    1. 引言 深度学习是一种在人工智能领域中具有重要影响力的技术,它已经在各种任务取得了显著的成果。而在深度学习算法,长短期记忆网络(Long Short-Term Memory,LSTM)是一种特殊的循环神经网络(Recurrent Neural Network,RNN),

    作者: 皮牙子抓饭
    发表时间: 2023-09-19 09:39:27
    49
    1
  • 深度学习之深度模型的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    338
    1
  • PyTorch:深度学习框架之争

    同设备上部署和运行模型。 TensorFlow 2.0引入了更加易用的Keras API,使得构建神经网络模型变得更加简单和直观。 PyTorch PyTorch由Facebook开发,也是一个流行的深度学习框架,具有以下特点: 动态计算图:与TensorFlow

    作者: 柠檬味拥抱
    发表时间: 2024-03-24 00:40:43
    4
    0
  • 深度学习的几个重要的词语概念

    训练集有100个样本,batchsize=10,那么: 训练完整个样本集需要: 10次iteration,1次epoch。 具体的计算公式为: one epoch = numbers of iterations = N = 训练样本的数量/batch_size Vanishing

    作者: AAAI
    发表时间: 2020-12-28 00:52:49
    2989
    0
  • 深度学习多层复合函数

    从数学上来看,深度神经网络仅仅是一种函数的表达形式,是复杂的多层复合函数。由于它有大量的可调参数,而且近年来随着大数据、优化算法和并行计算GPU硬件的发展,使得用大规模的神经网络来逼近和拟合大数据成为可能。

    作者: 我的老天鹅
    875
    22
  • 深度学习的Attention机制

    tention的原因:1、当输入序列非常长时,模型难以学到合理的向量表示2、序列输入时,随着序列的不断增长,原始根据时间步的方式的表现越来差,由于原始的时间步模型设计的结构有缺陷,即所有的上下文输入信息都被限制到固定长度,整个模型能力都同样受到限制,即简单的编码器模型。3、编解

    作者: 玉箫然
    1035
    0
  • 基于机器学习的深度学习的玫瑰花种类的识别

    model.fit( train_data, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_data=valid_data, validation_steps=VALIDATION_STEPS

    作者: 浩泽学编程
    98
    4
  • 走近深度学习,认识MoXing:数据输入教程

    用户存储的文件系统数据集以以下顺序排列(也就是os.listdir得到的list的顺序):base_dir |- label_0 |- label_1 |- label_10 |- label_11 |- label_2 ...则等效于labels.txt写入内容:0: label_01:

    作者: 云上AI
    发表时间: 2018-08-17 17:50:19
    6897
    0
  • 一分钟带你认识深度学习的知识蒸馏

    过程,如上图(c)。具体实现方式 有多种,例如先开始训练student模型,在整个训练过程的最后几个epoch的时候,利用前面训练的student作为监督模型,在剩下的epoch,对模型进行蒸馏。这样做的好处是不需要提前训练好teacher模型,就可以变训练边蒸馏,节省整个蒸馏过程的训练时间。1

    作者: talking_cv
    发表时间: 2020-09-21 15:00:17
    7782
    4
  • 深度学习案例分享 | 房价预测 - PyTorch 实现

    print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) 我们可以看到,在每个样本,第⼀个特征是 ID,这有助于模型识别每个训练样本。虽然这很⽅便,但它不携带任何⽤于预测的信息。因此,在将数据提供给模型之前,我们将其从数据集中删除。

    作者: 程序员学长
    发表时间: 2022-08-12 06:51:08
    519
    0
  • 深度学习

    深度学习是实现机器学习的一种技术。早期机器学习研究者还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络数据传播要经历不同的层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 用yolo-resnet训练时一直卡在epoch0处不动

    用yolov3-resnet18做目标检测任务,训练时一直卡在epoch0处不动,我的数据存放是按平台要求的目标检测格式,另外加了train.txt和validate.txt,请问问题出在哪

    作者: bdca
    1565
    1
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 深度学习导论

    一、深度学习的起源深度学习的发展历程可以追溯到1943年,当时心理学家麦卡洛克和数学逻辑学家皮茨发表论文《神经活动内在思想的逻辑演算》,提出了MP模型,这标志着神经网络的开端。在随后的几十年深度学习经历了多次起伏。如下图所示1958年,Rosenblatt发明了感知器(pe

    作者: 林欣
    42
    1
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1264
    13
提示

您即将访问非华为云网站,请注意账号财产安全