检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
800训练服务器三维视图 Atlas 800 训练服务器(型号9000)是基于华为鲲鹏920+Snt9处理器的AI训练服务器,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器
AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通常
启动智能任务 功能介绍 启动智能任务,支持启动“智能标注”和“自动分组”两大类智能任务。可通过指定请求体中的“task_type”参数来启动某类任务。数据路径或工作路径位于KMS加密桶的数据集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的
使用AI Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训
资源规格要求: 计算规格:不同模型训练推荐的NPU卡数请参见不同模型推荐的参数与NPU卡数设置。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。 Ascend: 8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。
资源规格要求: 计算规格:不同模型训练推荐的NPU卡数请参见不同模型推荐的参数与NPU卡数设置。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。 Ascend: 8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。
使用ModelArts Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注
emote.remot-sdh’,它被报告存在问题”。 原因分析 Remote - SSH只能在开源的VSCode软件中使用。 解决方案 推荐使用开源VS Code软件。 父主题: VS Code连接开发环境失败故障处理
获取智能任务的信息 功能介绍 获取智能任务的详细信息,支持查询“智能标注”和“自动分组”两大类智能任务。可通过指定路径参数“task_id”来查询某个具体任务的详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len=4096
数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片
切分数据时,选择的数据不对。 处理方法 尝试如下代码: X = dataset.iloc[:,:-1].values 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
只支持JPG、JPEG、PNG、BMP格式的图片。在OBS管理控制台上传时,单张图片的大小不能超过5MB,单次上传的图片总大小不能超过8MB,数据量大时推荐使用OBS Browser+上传 。 标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 图像分类标签“.txt”规范如下。
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内部存在同名包,而又未采用相对导入,将会出现冲突,导致部署或预测失败。
直接在OBS上写tensorboard文件,存在不稳定的风险。 处理方法 建议先将Tensorboard文件写到本地,然后再复制回OBS。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
只支持JPG、JPEG、PNG、BMP格式的图片,在OBS管理控制台上传时,单张图片的大小不能超过5MB,单次上传的图片总大小不能超过8MB,数据量大时推荐使用OBS Browser+上传 。 标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 表1 PASCAL VOC格式说明