内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    838
    2
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1251
    2
  • 根据 DNA 序列预测「NGS测序深度」的深度学习模型

    序列预测「NGS测序深度」的深度学习模型一种可以根据 DNA 序列预测「NGS测序深度」的深度学习模型 莱斯大学的研究人员设计了一个深度学习模型,该模型可以根据DNA序列,预测Next-Generation Sequencing(NGS)的测序深度。 针对预测测序深度的有针对性的NG

    作者: QGS
    1668
    0
  • 深度学习学习 XOR

    发挥作用的一个简单例子说起:学习 XOR 函数。       XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数

    作者: 小强鼓掌
    944
    3
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    627
    1
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习之模型平均

    aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model avera

    作者: 小强鼓掌
    734
    2
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1676
    3
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    例如,数字 “8’’ 形状的流形在大多数位置只有一维,但在中心的相交处有两维。如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    811
    1
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习初体验

    通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理

    作者: ad123445
    8088
    33
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1261
    13
  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一

    作者: 初学者7000
    838
    2
  • 深度学习典型模型

    型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难

    作者: 某地瓜
    1672
    1
  • 分享深度学习算法

    GR推荐原因这是第一篇关于基于深度学习的立体匹配任务的综述文章,以往关于立体匹配的综述文章多基于传统方法,或者年代已久。这篇综述文章主要总结了过去6年发表在主要会议和期刊上的150多篇深度立体匹配论文,可以称得上方法最新,分类最全,概括最广。在论文中,作者首先介绍了深度立体匹配网络的常用架

    作者: 初学者7000
    951
    3
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科

    作者: 初学者7000
    636
    1
  • 【开源模型学习】AlexNet深度学习模型总结

    复训练,选取出合适的a,LReLU的表现出的结果才比ReLU好。因此有人提出了一种自适应地从数据中学习参数的PReLU。PReLU是LeakyRelu的改进,可以自适应地从数据中学习参数。PReLU具有收敛速度快、错误率低的特点。PReLU可以用于反向传播的训练,可以与其他层同时优化。2

    作者: 小二中二大二
    1653
    0
  • 深度学习的挑战

    深度学习挑战 虽然深度学习具有令人印象深刻的能力,但是一些障碍正在阻碍其广泛采用。它们包括以下内容: •技能短缺:当O'Reilly公司的调查询问是什么阻碍人们采用深度学习时,受访者的第一个反应就是缺乏熟练的员工。2018年全球人工智能人才报告表明,“全世界大约有22,000名获

    作者: 建赟
    1652
    2
  • 深度学习模型轻量化

    硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。

    作者: 可爱又积极
    1257
    4