检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不
Ubuntu深度学习环境配置安装组合:Anaconda+PyTorch(CPU版)或PyTorch(GPU版)开源贡献:陈信达,华北电力大学3.1 Anacond安装Anaconda和Python版本是对应的,所以需要选择安装对应Python2.7版本的还是Python3.7版本
当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来
因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1
一种形式,而不是对输入原始值的破坏。例如,如果模型学得通过鼻检测脸的隐藏单元 hi,那么丢失 hi 对应于擦除图像中有鼻子的信息。模型必须学习另一种 hi,要么是鼻子存在的冗余编码,要么是脸部的另一特征,如嘴。传统的噪声注入技术,在输入端加非结构化的噪声不能够随机地从脸部图像中抹
要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重的贝叶斯推断的随机实现。贝叶斯学习过程将权重视为不确定的,并且可以通过概率分布表示这种不确定性。向权重添加噪声是反映这种不确定性的一种实用的随机方法。
深度学习的另一个最大的成就是其在强化学习 (reinforcement learning) 领域的扩展。在强化学习中,一个自主的智能体必须在没有人类操作者指导的情况下,通过试错来学习执行任务。DeepMind 表明,基于深度学习的强化学习系统能够学会玩Atari 视频游戏,并在多种任务中可与人类匹敌
1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support
的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”
回归,由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。
Bagging。然而,这种参数共享策略不一定要基于包括和排除。原则上,任何一种随机的修改都是可接受的。在实践中,我们必须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对 µ 所有可能的值训练
Transformers)模型,采用迁移学习和微调的方法,进一步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现
Mac深度学习环境配置安装组合:Anaconda+PyTorch(GPU版)开源贡献:马曾欧,伦敦大学2.1 安装AnacondaAnaconda 的安装有两种方式,这里仅介绍一种最直观的- macOS graphical install。https://www.anaconda
大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。所示的多项式回归实例中,有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 λ 是另一个
机器学习可以让我们解决一些人为设计和实现固定程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。如果考虑“任务”比较正式的定义,那么学习的过程并不是任务。在相对正式的 “任务”定义中,学习过程本身并不是任务。
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,
深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千
特征选择 f. 重新定义问题2. 从算法上提升性能 a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能 a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标
化`。 标准化后所有自变量的均值是0,方差是1。中心化后因变量的均值是0。 这样做可以让梯步下降法的数值更加稳定,更容易找到合适的初始值和学习步长。 一个标准化的方法就是让数据的每一列减去该列的均值,然后除以该列的样本标准差($sd(x)$): ![image.png](https://bbs-img