内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之监督学习算法

    监督学习算法 (supervised learning algorithm) 训练含有很多特征的数据集,不过数据集中的样本都有一个标签 (label) 或目标 (target)。例如,Iris数据集注明了每个鸢尾花卉样本属于什么品种。监督学习算法通过研究 Iris数据集,学习如何

    作者: 小强鼓掌
    864
    2
  • 深度学习初体验

    通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理

    作者: ad123445
    8088
    33
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1260
    13
  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一个能源密集型的过程,需要电力密集型专用硬件,每天

    作者: 初学者7000
    838
    2
  • 深度学习应用开发》学习笔记-29

    1是直接使用sklearn.preprocessing里的scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试的数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散的操作 代码如下: 最后loss看上去比较大,都上百了,是因为是做了平方的原因吧~我猜

    作者: 黄生
    767
    3
  • 图像视频压缩:深度学习,有一套

    为编码器;qq 为量化器;GG 为解码和生成器;DD 为对抗器。 基于深度学习的视频压缩编码 基于深度学习的视频编码分为两种: • 采用深度学习替代传统视频编码中部分模块 • 端到端采用深度学习编码压缩 部分方案 采样深度神经网络可以替代传统视频编码中的模块包括:帧内/帧间预测、变换、上下采样、环路滤波、熵编码等6。

    作者: 技术火炬手
    发表时间: 2021-03-23 06:28:07
    7893
    0
  • 深度学习笔记之表示学习

    解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为

    作者: 小强鼓掌
    854
    1
  • 学习笔记-如何提升深度学习性能?

    以下个人做的笔记,来源于DataCastle数据城堡作者DC君的竞赛经验。性能提升的力度按下方技术方案的顺序从上到下依次递减:1. 从数据上提升性能   a. 收集更多的数据 b. 产生更多的数据 c. 对数据做缩放 d. 对数据做变换 e. 特征选择 f. 重新定义问题2. 从算法上提升性能 

    作者: RabbitCloud
    631
    1
  • 深度学习应用开发》学习笔记-11

    太快步子大了容易扯着蛋,也没有必要。这里的用学习率/步长来描述这个节奏,如果梯度是2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就

    作者: 黄生
    1128
    1
  • 机器学习深度学习的区别是什么?

    深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 深度学习深陷困境!

    机。然而,当风险较高时,比如在放射学或无人驾驶汽车领域,我们对待深度学习的态度就要更加谨慎。如果一个小小的错误就能夺去一条生命,那么深度学习还不够优秀,不足以应用。在遇到与训练数据差异非常大的“异常值”时,深度学习系统表现出的问题尤为明显。例如,不久前,一辆特斯拉在所谓的全自动驾

    作者: 星恒
    249
    3
  • 选择数据

    选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模

  • 深度学习应用开发》学习笔记-01

    人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快

    作者: 黄生
    1139
    5
  • 深度学习之无监督学习算法

    特征还是目标。通俗地说,无监督学习是指从不需要人为注释样本的分布中抽取信息的大多数尝试。该术语通常与密度估计相关,学习从分布中采样,学习从分布中去噪,需要数据分布的流形,或是将数据中相关的样本聚类。        一个经典的无监督学习任务是找到数据的 “最佳”表示。“最佳”可以是

    作者: 小强鼓掌
    950
    1
  • 数据机器学习-节选

    似度,基于哈希码表示将得不到好的检索效果。根据训练数据中是否包含监督信息, 哈希学习可以分为非监督哈希学习、监督 哈希学习和半监督哈希学习;根据训练数 据是否是多模态,哈希学习可以分为单模 态哈希学习和多模态哈希学习;根据模型 是否利用深度学习进行特征学习,哈希学 习可以分为非深度哈希学习深度哈希学 习。我们研究组从

    作者: andyleung
    1171
    1
  • 深度学习修炼(二)——数据集的加载

    文章目录 致谢 2 数据集的加载2.1 框架数据集的加载2.2 自定义数据集2.3 准备数据以进行数据加载器训练 致谢 Pytorch自带数据集介绍_godblesstao的博客-CSDN博客_pytorch自带数据集 2 数据集的加载 与sklea

    作者: ArimaMisaki
    发表时间: 2022-08-08 17:06:38
    315
    0
  • 数据准备

    图3 配置数据集参数 发布数据集。 图4 发布数据数据集发布的过程并不会直接从数据源中导出用户数据,仅仅是从数据源处获取了数据集相关的元数据信息,用于任务的解析、验证等。

  • 啥是AI、机器学习深度学习

    提出“深度学习”概念的Hinton教授加入了google,而Alpha go也是google家的。在一个新兴的行业,领军人才是多么的重要啊!  总结:人工智能是一个很老的概念,机器学习是人工智能的一个子集,深度学习又是机器学习的一个子集。机器学习深度学习都是需要大量数据来“喂”

    作者: freeborn0601
    9640
    3
  • 深度学习的应用

    很多研究机构都是在利用大规模数据语料通过GPU平台提高DNN声学模型的训练效率。在国际上,IBM、google等公司都快速进行了DNN语音识别的研究,并且速度飞快。国内方面,阿里巴巴、科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。  自然语

    作者: QGS
    1523
    2
  • 深度学习的应用

    很多研究机构都是在利用大规模数据语料通过GPU平台提高DNN声学模型的训练效率。在国际上,IBM、google等公司都快速进行了DNN语音识别的研究,并且速度飞快。 国内方面,阿里巴巴、科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。自然语言处

    作者: QGS
    657
    1