内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 机器学习数据特征预处理归一化和标准化

    特征预处理 通过特定的统计方法(数学方法)将数据转换成算法要求的数据 数值型数据: -标准缩放 - 归一化 - 标准化 - 缺失值 类别行数据: - one-hot编码 时间型数据: - 时间的切分 123456789 1、归一化 将原始数据映射到一个区间[0,1]

    作者: 彭世瑜
    发表时间: 2021-08-13 16:11:22
    737
    0
  • MindSpore预处理图像数据

    概述图像预处理的主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进特征抽取、图像分割、匹配和识别的可靠性。此处是通过创建LiteMat对象,在推理前对图像数据进行处理,达到模型推理所需要的数据格式要求。流程如下:标准流程在这一

    作者: 佳佳21111
    654
    0
  • 【问答官】学习深度学习需要懂的数据结构和算法有哪些?

    想要从数据结构和算法的层面去理解深度学习,需要做哪些尝试?

    作者: Felix666
    1031
    4
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    955
    4
  • 自动学习

    自动学习 使用自动学习0代码开发图像分类AI模型 父主题: 使用场景

  • 《机器学习:算法视角(原书第2版)》 —3.4.5 数据预处理

    不同,因为两个集合的均值和方差很可能是不一样的。基于这个原因,最好在把数据集分为训练集和测试集之前,对数据进行归一化。可以在不事先了解数据集的情况下完成归一化。 但是,通常可以通过适当的方式来对数据进行预处理。比如说,第0列是每个人怀孕的次数(我提到过所有的实验对象都是女性吗?)

    作者: 华章计算机
    发表时间: 2019-12-21 15:13:10
    5403
    0
  • 数据学习

    数据学习有没有推荐的资料呀?适合小白的那种

    作者: MiaoA知识
    97
    5
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 传感器数据预处理

    传感器数据预处理(如过滤、聚合)是否应在MQTT客户端完成?

    作者: yd_248406743
    18
    1
  • 使用CSS实现日志数据预处理

    使用CSS实现日志数据预处理 适用场景 在SRE运维领域,日志数据是系统故障排查、性能优化的可靠依据,现网产生的各类日志数据都是碎片化、异构化状态,不便于数据分析。日志分析场景下,CSS常用于各类日志数据的分布式存储与搜索,比如华为公司内部某监控服务

  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    837
    2
  • 深度学习之半监督学习

    深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    749
    10
  • 深度学习学习

    1%。主要问题是如何设置 ϵ0。若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。通常,就

    作者: 小强鼓掌
    452
    2
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1251
    2
  • 浅谈深度学习

    制等。工作原 理深度学习的工作原理如下:首先,它会收集大量数据,并将其存储在训练集中。然后,深度学习模型会对训练集中的数据进行特征提取,以便更好地适应不同的数据类型。最后,深度学习模型会根据训练集的数据特征,对新的数据进行分类或预测。应用在图像识别领域,深度学习技术可以自动识别图

    作者: 运气男孩
    23
    3
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 什么是深度学习

    哪一层。也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出

    作者: 角动量
    1546
    5
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    627
    1
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高度集中。

    作者: 小强鼓掌
    1676
    3