内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之正则化

    机器学习中的一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好的算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。我们将在后文看到,深度学习工作者可以使用许多不同形式的正则化策略。事实上,开发更有效的正则化

    作者: 小强鼓掌
    528
    0
  • ModelArts如何提供海量数据预处理功能?

    ModelArts如何提供海量数据预处理功能?

    作者: simplexue
    4585
    1
  • 深度学习之噪声

    ϵ 的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化的主要目的是改善优化,但噪声具有正则化的效果,有时没必要再使用Dropout。

    作者: 小强鼓掌
    1045
    3
  • 数据学习路线

    第1部分:入门    1)了解数据库的基本概念  ->通俗的将就是明白数据库的用途,在开发中充当什么角色    2)如何安装数据库?          -> 工欲善其事必先利其器 安装数据库   根据不同的项目环境使用不同的数据库来管理数据会起到事半工倍的效果(在我主页查看数据库的安装)    3)表的创建、删除和更新 

    作者: 窗台
    1739
    1
  • 深度残差收缩网络:一种深度学习的故障诊断算法

    别性强的特征集,是基于机器学习的故障诊断中一个长期挑战。1598845260401021874.png【翻译】近年来,深度学习方法,即有多个非线性映射层的机器学习方法,成为了基于振动信号进行故障诊断的有力工具。深度学习方法能够自动地从原始振动数据学习特征,以取代传统的统计特征,

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0
  • 浅谈深度学习Backbone

    将某个通道的特征取平均值self.gap = nn.AdaptiveAvgPool2d(1)Embedding: 深度学习方法都是利用使用线性和非线性转换对复杂的数据进行自动特征抽取,并将特征表示为“向量”(vector),这一过程一般也称为“嵌入”(embedding)用于预训

    作者: QGS
    82
    2
  • 深度学习模型结构

    目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: 运气男孩
    1146
    2
  • 通过多任务学习改进证据深度学习

    边际似然损失,有可能导致目标预测不准确。本文的目标是通过解决梯度收缩问题来提高ENet的预测精度,同时保持其有效的不确定性估计。一个多任务学习(MTL)框架,被称为MT-ENet,被提出来实现这一目标。在MTL中,我们将Lipschitz修正均方误差(MSE)损失函数定义为另一种

    作者: 可爱又积极
    1761
    3
  • 深度学习之经验E

    属于什么品种,其**有三个不同的品种。无监督学习算法 (unsupervised learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合

    作者: 小强鼓掌
    1164
    3
  • 深度学习高级,Keras多输入和混合数据实现回归模型

    性别和种族图像数据,例如任何 MRI、X 射线等。 所有这些值构成了不同的数据类型; 然而,我们的机器学习模型必须能够摄取这种“混合数据”并对其进行(准确)预测。 在使用多种数据模式时,您会在机器学习文献中看到术语“混合数据”。 开发能够处理混合数据的机器学习系统可能极具挑战

    作者: AI浩
    发表时间: 2021-12-22 15:26:50
    2029
    0
  • 深度学习之交叉验证

    程是基于在原始数据上随机采样或分离出的不同数据集上重复训练和测试的想法。最常见的是 k-折交叉验证过程,如算法5.1所示,将数据集分成 k 个不重合的子集。测试误差可以估计为 k 次计算后的平均测试误差。在第 i 次测试时,数据的第 i 个子集用于测试集,其他的数据用于训练集。带

    作者: 小强鼓掌
    935
    3
  • 深度学习之交叉验证

    问题。当数据集太小时,也有替代方法允许我们使用所有的样本估计平均测试误差,代价是增加了计算量。这些过程是基于在原始数据上随机采样或分离出的不同数据集上重复训练和测试的想法。最常见的是 k-折交叉验证过程,如算法5.1所示,将数据集分成 k 个不重合的子集。测试误差可以估计为 k 次计算后的平均测试误差。在第

    作者: 小强鼓掌
    828
    3
  • 机器学习深度学习的未来趋势

    机器学习深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1241
    2
  • 深度学习入门》笔记 - 20

    因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1

    作者: 黄生
    25
    1
  • 深度学习库 JAX

        JAX是一个似乎同时具备Pytorch和Tensorflow优势的深度学习框架。 JAX 是 Google Research 开发的机器学习库,被称为“在 GPU/TPU上运行的具有自动微分功能的Numpy”,该库的核心是类似 Numpy 的向量和矩阵运算。我个人认为,与

    作者: QGS
    7168
    3
  • 深度学习训练过程

    权重。自下上升的非监督学习就是从底层开始,一层一层地往顶层训练。采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,这也是和传统神经网络区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看

    作者: QGS
    1054
    3
  • 深度学习在测井数据噪声去除中的实践经验

    获取地下储层的相关数据。然而,测井数据中常常存在各种噪声,这些噪声会影响数据的准确性和可靠性。传统的滤波和降噪方法在处理复杂的噪声情况下往往表现不佳。本文将介绍如何利用深度学习技术来处理测井数据中的噪声,以提高数据质量和解释精度。 数据预处理 在开始深度学习噪声去除之前,我们

    作者: 皮牙子抓饭
    发表时间: 2023-06-10 09:28:37
    8
    1
  • 深度学习是机器学习的一种

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    531
    1
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4079
    2
  • 深度学习之经验风险

    机器学习算法的目标是降低式 (8.2) 所示的期望泛化误差。这个数据量被称为风险(risk)。在这里,我们强调该期望取自真实的潜在分布 pdata。如果我们知道了真实分布 pdata(x, y),那么最小化风险变成了一个可以被优化算法解决的优化问题。然而,我们遇到的机器学习问题,通常是不知道

    作者: 小强鼓掌
    628
    2
提示

您即将访问非华为云网站,请注意账号财产安全