内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习将无所不能”

    突然打破了这个天花板,他们惊人地超出了10.8个百分点,赢得了比赛。那个教授便是杰弗里·辛顿,他们使用的技术叫做深度学习。自20世纪80年代以来,辛顿一直致力于深度学习的研究工作,由于缺乏数据和计算能力,其有效性受到了限制,一直到2012年才取得成果。辛顿对这项技术的坚定信念最终

    作者: 运气男孩
    721
    1
  • 深度学习已经取得的进展

    虽然深度学习是机器学习一个相当有年头的分支领域,但在 21 世纪前十年才崛起。在随后的几年里,它在实践中取得了革命性进展,在视觉和听觉等感知问题上取得了令人瞩目的成果,而这些问题所涉及的技术,在人类看来是非常自然、非常直观的,但长期以来却一直是机器难以解决的。特别要强调的是,深度

    作者: ypr189
    827
    1
  • 【云驻共创】深度学习概览

    带着这些学习目标,让我们一起学习深度学习的内容吧~ 目录 深度学习简介 训练法则 正则化 优化器 神经网络类型 常见问题 1. 深度学习简介 首先,我们看下如下图传统机器学习深度学习的一种比较。众所周知深度学习是属于机器学习,但是由于大多数深度学习的样本是没有标签的,而且在神

    作者: 府学路18号车神
    发表时间: 2022-05-15 11:21:35
    1281
    0
  • 深度学习之架构设计

    我们还可能出于统计原因来选择深度模型。任何时候,当我们选择一个特定的机器学习算法时,我们隐含地陈述了一些先验,这些先验是关于算法应该学得什么样的函数的。选择深度模型默许了一个非常普遍的信念,那就是我们想要学得的函数应该涉及几个更加简单的函数的组合。这可以从表示学习的观点来解释,我们相信学习的问题包含

    作者: 小强鼓掌
    328
    0
  • 深度学习 - 图像检索

    一  随着深度学习的引入,基于深度学习的图像检索技术,主要是将深度学习方法应用在图像检索中的特征提取模块,利用卷积神经网络提取图片特征。二  主要步骤即给定一张图片,通过卷积神经网络对图片进行特征提取得到表征图片的特征,利用度量学习方法如欧式距离对图片特征进行计算距离。三  对图

    作者: 我就是豆豆
    338
    0
  • 拟合与过拟合的概念

    她换了手机壳或没戴帽子就不认识这人了。过拟合在于将偶然的特征也作为识别身份的标志,而欠拟合在于了解的特征的特征不够多,在机器学习中表示模型的学习能力不够,无法学到足够的数据特征。欠拟合的特点:训练的损失值很大,且测试的损失值也很大。过拟合的特点:训练的损失值足够小,而测试的损失值

    作者: @Wu
    952
    1
  • 深度学习中的Normalization模型

    很快被作为深度学习的标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限和问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN的问题,最近两年又陆续有基于BN思想的很多改进Normalization模型被提出。BN是深度学习进展中里程

    作者: 可爱又积极
    841
    3
  • 分享关于深度学习Python库

    深度学习1. TensorFlow星标:149000,提交数:97741,贡献者:754TensorFlow是针对机器学习的端对端开源平台。它具备综合灵活的工具、库和社区资源,可以帮助研究者推动先进的机器学习技术的发展以及开发者更轻松地开发和发布由机器学习支持的应用。2. Ker

    作者: 初学者7000
    1072
    2
  • 《scikit-learn机器学习常用算法原理及编程实战》—3.4.2 过拟合和欠拟合的特征

    3.4.2 过拟合和欠拟合的特征  到此,我们可以总结过拟合和欠拟合的特点如下。* 过拟合:模型对训练数据集的准确性比较高,其成本Jtrain(θ)比较低,对交叉验证数据集的准确性比较低,其成本Jcv(θ)比较高。* 欠拟合:模型对训练数据集的准确性比较低,其成本Jtrain(θ

    作者: 华章计算机
    发表时间: 2019-05-31 17:08:26
    8348
    0
  • OpenCV(27)---轮廓拟合-最优拟合椭圆

    在OpenCV中,它给我们提供了cv2.fitEllipse()函数绘制最优拟合椭圆。其完整的定义如下:def fitEllipse(points): 复制代码其中points参数与前文一致,而它的返回值是RotatedRect类型,这是因为该函数返回的是拟合椭圆的外接矩形,包括矩形的质心,宽高,旋转角度等

    作者: @Wu
    849
    0
  • 分享关于深度学习Python库

    深度学习1. TensorFlow星标:149000,提交数:97741,贡献者:754TensorFlow是针对机器学习的端对端开源平台。它具备综合灵活的工具、库和社区资源,可以帮助研究者推动先进的机器学习技术的发展以及开发者更轻松地开发和发布由机器学习支持的应用。2. Ker

    作者: 初学者7000
    633
    1
  • 深度学习之前馈网络举例说明

      这种通过学习特征来改善模型的一般化原则不止适用于本章描述的前馈神经网络。它是深度学习中反复出现的主题,适用于全书描述的所有种类的模型。前馈神经网络是这个原则的应用,它学习从 x 到 y 的确定性映射并且没有反馈连接。后面出现的其他模型会把这些原则应用到学习随机映射、学习带有反馈的函数以及学习单个向量的概率分布。

    作者: 小强鼓掌
    936
    3
  • [深度学习]测距

    系列内容深度学习CNN 文章目录 ADAS摄像头成像需具备的两大特点单目镜头的测距原理双目镜头的测距原理 ADAS摄像头成像需具备的两大特点 是要看得足够远 看的越远就能有更加充裕的时间做出判断和反应,从而 避免或者降低事故发生造成的损失。 是要求高动态

    作者: 内核笔记
    发表时间: 2021-06-08 15:51:49
    1409
    0
  • 简述深度学习的几种算法

    本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing

    作者: 运气男孩
    841
    3
  • 深度学习与神经科学

    算模型,因而它们是纯计算驱动的深度学习模型的技术先驱。这些理论指出,大脑中的神经元组成了不同的层次,这些层次相互连接,形成一个过滤体系。在这些层次中,每层神经元在其所处的环境中获取一部分信息,经过处理后向更深的层级传递。这与后来的单纯与计算相关的深度神经网络模型相似。这一过程的结

    作者: 某地瓜
    1231
    1
  • 深度学习】嘿马深度学习笔记第1篇:深度学习基本概要【附代码文档】

    掌握神经网络图像相关案例 深度学习介绍 1.1 深度学习与机器学习的区别 学习目标 目标 知道深度学习与机器学习的区别 应用 无 1.1.1 区别 1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识 深度学习通常由多个层组成

    作者: 程序员一诺python
    发表时间: 2024-08-16 17:03:45
    22
    0
  • 深度学习修炼(六)——神经网络分类问题

    如果把偏差——方差看成一个色谱,那么与之相反的一端的是深度神经网络。神经网络并不局限与单独查看每个特征,而是学习特征之间的交互。例如:神经网络可能推断“尼日利亚”和“西联汇款”一起出现在电子邮件中表示垃圾邮件,但单独出现则不表示垃圾邮件。 即使我们有比特征多得多的样本,深度神经网络也有可能过拟合。 6.3.2 在稳健性中加入扰动

    作者: ArimaMisaki
    发表时间: 2022-08-09 15:48:10
    263
    0
  • 【MindSpore易点通】深度学习系列:正则化

    大于训练误差。因此学习模型主要需要解决两个问题:1.减小训练误差。2.减小训练误差和测试误差间的间距。那么也就是说这两点分别对应着学习模型的欠拟合(underfitting)和过拟合(overfitting)这两个问题。PS:欠拟合指模型的训练误差过大,过拟合指训练误差和测试误差

    作者: Skytier
    2465
    0
  • 深度学习之超参数和验证集

             大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 是另一个超参数。 

    作者: 小强鼓掌
    935
    4
  • 深度学习服务产品介绍

    深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练。

    播放量  20251