内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 机器学习——深度学习(Deep Learning)

    Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,

    作者: 格图洛书
    发表时间: 2021-12-29 16:20:46
    631
    0
  • 深度学习学习和纯优化有什么不同

    时所预测的输出,pˆdata 是经验分布。监督学习中,y 是目标输出。在本章中,我们会介绍不带正则化的监督学习,L的变量是 f(x; θ) 和 y。不难将这种监督学习扩展成其他形式,如包括 θ 或者 x 作为参数,或是去掉参数 y,以发展不同形式的正则化或是无监督学习

    作者: 小强鼓掌
    346
    1
  • 深度学习之灾难遗忘

    每个 maxout 单元现在由 k 个权重向量来参数化,而不仅仅是一个,所以 maxout单元通常比整流线性单元需要更多的正则化。如果训练集很大并且每个单元的块数保持很低的话,它们可以在没有正则化的情况下工作得不错 (Cai et al., 2013)。maxout 单元还有一些

    作者: 小强鼓掌
    418
    0
  • 深度学习入门》笔记 - 27

    下面用之前的广告数据,来建立线性回归模型,看看tensorflow2的一般建模过程。import numpy as np #1. 数据预处理:装载广告数据 def loadDataSet(): x=[];y=[] f=open('./Ad.csv')

    作者: 黄生
    22
    2
  • 深度学习之快速 Dropout

    使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收

    作者: 小强鼓掌
    541
    1
  • 深度学习入门》笔记 - 28

    线性回归模型相当于下面的简单神经网络模型,它没有隐藏层、输出层只有1个节点,激活函数是线性函数。使用 tf.keras.models.Sequential()构建模型使用 model.compile() 设置优化方法、损失函数、评价指标 (损失函数的值即 训练误差;评价指标的值即

    作者: 黄生
    33
    5
  • 深度学习入门》笔记 - 04

    然后就是Python的介绍。包括常见的数据类型,基本算术运算,比较和布尔运算,如何载入额外的模块和包。 基本数据结构有列表、元组、字典和集合。控制结构,内建函数和自定义函数。 然后介绍numpy库,他可以实现快速的算数运算,特别是矩阵运算,运算内部是通过C语言实现的,所以比较快。

    作者: 黄生
    41
    1
  • 深度学习入门》笔记 - 17

    正向传播(Forward Propagation FP)算法指输入值通过神经网络得到输出值的方法。正向传播算法的计算图如下:$sigma$表示sigmoid函数,也就是激活函数。包含损失函数的计算图如下:得到$l_2$,通过$l$计算损失函数L,其中$l$表示求解损失函数的运算。

    作者: 黄生
    35
    3
  • 深度学习图卷积

    作者: 我的老天鹅
    825
    6
  • 深度学习入门》笔记 - 22

    神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate

    作者: 黄生
    38
    3
  • 深度学习之聚类问题

    关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外

    作者: 小强鼓掌
    536
    1
  • 深度学习入门》笔记 - 25

    L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,

    作者: 黄生
    20
    1
  • 深度学习之批量算法

    促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对

    作者: 小强鼓掌
    317
    1
  • 深度学习之梯度下降

    对于牛顿法而言,鞍点显然是一个问题。梯度下降旨在朝“下坡”移动,而非明确寻求临界点。而牛顿法的目标是寻求梯度为零的点。如果没有适当的修改,牛顿法就会跳进一个鞍点。高维空间中鞍点的激增或许解释了在神经网络训练中为什么二阶方法无法成功取代梯度下降。Dauphin et al. (2014)

    作者: 小强鼓掌
    331
    2
  • 深度学习入门》笔记 - 15

    ```python #定义sigmoid函数 def sigmoid(input): return 1.0/(1+np.exp(-input)) #通过随机梯度下降法估计参数 def logit_model(x,y,w,b,lr=0.1): for iter in range(60):

    作者: 黄生
    208
    2
  • 深度学习之参数绑定

    参数添加约束或惩罚时,一直是相对于固定的区域或点。例如,L2正则化(或权重衰减)对参数偏离零的固定值进行惩罚。然而,有时我们可能需要其他的方式来表达我们对模型参数适当值的先验知识。有时候,我们可能无法准确地知道应该使用什么样的参数,但我们根据领域和模型结构方面的知识得知模型参数之

    作者: 小强鼓掌
    835
    2
  • 深度学习之快速 Dropout

    使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收

    作者: 小强鼓掌
    1198
    4
  • 深度学习之任务分类

    作者: 小强鼓掌
    724
    0
  • 深度学习之模板匹配

    1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support

    作者: 小强鼓掌
    550
    1
  • 深度学习之贝叶斯统计

    的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”

    作者: 小强鼓掌
    720
    4