检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20
所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;
个元素都分别拥有自己的学习率。 AdaGrad 总结:在凸优化背景中,AdaGrad 算法具有一些令人满意的理论性质。但是,经验上已经发现,对于训练深度神经网络模型而言,从训练开始时积累梯度平方会导致有效学习率过早和过量的减小。AdaGrad 在某些深度学习模型上效果不错,但不是全部。
【功能模块】使用ascend芯片进行训练,使用sgd,初始学习率1e-4,第一回合训练loss正常,但是第二回合loss变得特别大,第三回合又恢复正常,之后loss就都保持和第一回合一样,也不下降,不知道要怎么去查看原因【操作步骤&问题现象】1、2、【截图信息】【日志信息】(可选,上传日志内容或者附件)
在深度学习模型训练中,界常用的学习率策略有哪几种?
与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。 20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年,
学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。深度学习应用
【功能模块】mindspore.ops.Dropout2D()【操作步骤&问题现象】使用mindspore.ops.Dropout2D()模型训练时loss值不下降(loss值一直保持和随机初始化的结果接近),使用nn.Dropout()则正常下降【截图信息】【日志信息】(可选,上传日志内容或者附件)
怎么判断训练好的模型是什么引擎呢
范围,那么归一化就不是很重要了。梯度爆炸/消失训练深度神经网络经常会面临梯度消失(梯度爆炸)的问题,也就是说,训练时导数或坡度有时会变得非常大,或者非常小,甚至于以指数方式变小,这样会加大训练的难度。那么如何避免这样的问题呢?假设训练一个神经网络,含有参数W[1],W[2],W[3],
【功能模块】在自动学习中,只能设置训练时长的参数,如果设置了一个训练时间,引擎会不会在检测到准确率下降后自动停止训练呢?【操作步骤&问题现象】1、2、【截图信息】【日志信息】(可选,上传日志内容或者附件)
深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分
Jerry之前的两篇文章介绍了如何通过Restful API的方式,消费SAP Leonardo上预先训练好的机器学习模型: 如何在Web应用里消费SAP Leonardo的机器学习API 部署在SAP Cloud Platform CloudFoundry环境的应用如何消费 当时Jerry提到,Product
提交训练任务后,如果想看output目录下的结果,如果使用WebIDE,点击左边NAIE图标 -> Job Explorer -> 对应任务的output目录。如果使用编辑器,点击最左边的3个图标最后一个,如下图红框处,即“任务目录”,点开对应的训练的任务就可以看到每
layer),以此类推。链的全长称为模型的深度 (depth)。正是因为这个术语才出现了 ‘‘深度学习’’ 这个名字。前馈网络的最后一层被称为输出层 (output layer)。在神经网络训练的过程中,我们让 f(x) 去匹配 f∗(x) 的值。训练数据为我们提供了在不同训练点上取值的、含有噪声的
发挥作用的一个简单例子说起:学习 XOR 函数。 XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数
深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse
组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类
石油炼化行业是一个高风险的行业,炼油过程中存在着多种潜在的安全隐患。为了保证生产过程的安全性和稳定性,石油炼化企业需要采取有效的安全控制措施。近年来,深度学习技术的快速发展为石油炼化过程的安全控制提供了新的思路和方法。本文将探索基于深度学习的石油炼化过程安全控制的应用和潜力。 基于深度学习的石油炼化过程安全控制
是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程图中的