内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 指定GPU运行和训练 python程序 、深度学习单卡、多卡 训练GPU设置【一文读懂】

    以偏概全,如有不恰当的地方,欢迎评论区批评指正 对于即将入行计算机视觉的小伙伴,墨理这里推荐收藏的干货博文目前如下 ❤️ 深度学习各领域数据集有效整理——持续更新 🎉 深度学习模型训练推理——基础环境搭建推荐博文查阅顺序【基础安装—认真帮大家整理了】——【1024专刊】 ❤️ 人生苦短,

    作者: 墨理学AI
    发表时间: 2022-01-10 16:23:43
    872
    0
  • 深度解析:深度信念网络DBN降维模型训练要点》

    定了模型在训练过程中参数更新的步长。如果学习率设置过小,模型的训练速度会非常缓慢,需要更多的训练时间和迭代次数才能收敛;相反,如果学习率设置过大,模型可能会在训练过程中跳过最优解,导致无法收敛甚至发散。在DBN的降维训练中,通常需要通过试验不同的学习率值,观察模型的训练效果,找到

    作者: 程序员阿伟
    发表时间: 2025-02-04 18:03:26
    0
    0
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • (Moxing篇一)自研深度学习MoXingAPI使模型训练再次升级

    原生API,使用MoXingAPI开发深度学习算法模型编程更加简单,而且能够自动获得高性能的分布式执行能力。</align><align=left><b>华为云深度学习——高性能</b></align><align=left>华为云深度学习的高效性是通过混合并行、梯度压缩、卷积加

    作者: freeborn0601
    18439
    5
  • 深度学习之TensorFlow入门、原理与进阶实战》—3.1.3 迭代训练模型

    3.1.3 迭代训练模型  迭代训练的代码分成两步来完成:  1.训练模型  建立好模型后,可以通过迭代来训练模型了。TensorFlow中的任务是通过session来进行的。  下面的代码中,先进行全局初始化,然后设置训练迭代的次数,启动session开始运行任务。代码3-1 线性回归(续)24

    作者: 华章计算机
    发表时间: 2019-05-31 13:50:23
    4906
    0
  • 深度学习导论

    的机器学习算法,在分类问题上表现出了良好的性能。随着深度学习的不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域的重要工具,例如自然语言处理、计算机视觉、语音识别和医疗诊断等。尽管深度学习还面临着一些挑战和问题,但随着技术的不断进步和应用场景的不断拓展,相信深度学习将继

    作者: 林欣
    42
    1
  • 《机器学习模型快速收敛的秘籍大揭秘》

    从而加速收敛。 调整学习率 学习率是控制模型参数在每次迭代中更新幅度的重要超参数。如果学习率过大,可能会导致模型在训练过程中产生振荡,无法收敛甚至错过最优解;而学习率过小,则会使模型收敛速度过慢。可以采用动态调整学习率的策略,如学习率衰减。随着训练的进行,逐渐降低学习率,这样在

    作者: 程序员阿伟
    发表时间: 2025-01-02 22:49:13
    110
    0
  • 在华为云上使用弹性GPU服务加速深度学习训练和推理

    加速训练和推理过程。根据数据集的大小和模型的复杂度,完成训练和推理的时间会显著减少。 结论: 本文介绍了如何在华为云上利用弹性GPU服务加速深度学习训练和推理。通过创建GPU实例、安装深度 学习框架,并编写相应的代码,开发者可以充分发挥弹性GPU服务的优势,提高深度学习任务的效

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 17:17:43
    2
    0
  • 深度学习之基于梯度的学习

    为了非凸的。这意味着神经网络的训练通常使用的迭代的、基于梯度的优化,仅仅使得代价函数达到一个非常小的值;而不是像用于训练线性回归模型的线性方程求解器,或者用于训练逻辑回归或SVM的凸优化算法那样具有全局的收敛保证。凸优化从任何一种初始参数出发都会收敛(理论上如此——在实践中也很鲁

    作者: 小强鼓掌
    833
    2
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • 深度学习随机取样、学习

    然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计算,而批量块大小的选择同时会影响收敛速度和模型结果。批量块选择的两种常见情况:整个训练集:选择整个训练集进行模型训练是最常见的情形。随机训练集:代表性方法就是随机梯度下降(SGD),

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计算,而批量块大小的选择同时会影响收敛速度和模型结果。批量块选择的两种常见情况:整个训练集:选择整个训练集进行模型训练是最常见的情形。随机训练集:代表性方法就是随机梯度下降(SGD),

    作者: 运气男孩
    1444
    5
  • ATCS 一个用于训练深度学习模型的数据集

    数据集概览 A-Train云分割数据集旨在训练深度学习模型,从多角度卫星图像中体积分割云层。该数据集包含丰富的云层信息,适用于云检测研究。 资源获取 数据集由NASA开放,用户可以从其开放数据门户下载相关数据,进行云检测和深度学习算法的训练。 应用场景 除了云检测,该数据集还

    作者: 此星光明
    发表时间: 2024-09-08 12:32:17
    332
    0
  • ModelArts训练作业预置框架自定义配置深度学习框架版本

    当前ModelArts各功能都只支持有限的框架版本,如果想要使用一个预置框架没有的版本应该如何处理?下面以pytorch 1.5和tensorflow 1.14为例,如何训练作业预置框架进行动态配置Pytorch 1.5和tensorflow 1.14Pytorch 1.5要基于cuda

    作者: 星月菩提
    发表时间: 2020-11-24 17:21:24
    5040
    0
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1254
    2
  • modelarts的学习率适中和过大是如何判断的呢?

    modelarts的学习率适中和过大是如何判断的呢?是不同的项目的 判断标准不一样的吗? 还是有一个通用的标准的呢? 这个对我们最后训练得到的模型有什么影响的吗?比如     学习力               相对应有什么的模型影响的不?     适中     过大    有过小不?  

    作者: andyleung
    1155
    2
  • 利用深度强化学习优化钻井过程

    控制钻井液的密度,影响井壁稳定性 通过调整这些关键参数,深度强化学习可以根据地层特征和钻井目标来优化钻井过程,提高钻井效率和质量。 深度强化学习的训 练过程 深度强化学习训练过程通常分为离线训练和在线优化两个阶段。在离线训练阶段,我们可以利用历史钻井数据来训练深度强化学习模型。通过建立状态、动作和奖励

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 17:08:33
    5
    0
  • 使用Python实现深度学习模型:分布式训练与模型并行化

    引言 随着深度学习模型的复杂度和数据量的增加,单一设备的计算能力往往无法满足训练需求。分布式训练和模型并行化技术可以有效地加速模型训练过程,提高计算效率。本文将介绍如何使用Python实现深度学习模型的分布式训练与模型并行化。 所需工具 Python 3.x TensorFlow

    作者: Echo_Wish
    发表时间: 2024-07-09 08:23:19
    103
    0
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    853
    2
提示

您即将访问非华为云网站,请注意账号财产安全