内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 使用Python实现深度学习模型:分布式训练与模型并行化

    引言 随着深度学习模型的复杂度和数据量的增加,单一设备的计算能力往往无法满足训练需求。分布式训练和模型并行化技术可以有效地加速模型训练过程,提高计算效率。本文将介绍如何使用Python实现深度学习模型的分布式训练与模型并行化。 所需工具 Python 3.x TensorFlow

    作者: Echo_Wish
    发表时间: 2024-07-09 08:23:19
    103
    0
  • 深度学习随机取样、学习

    然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计算,而批量块大小的选择同时会影响收敛速度和模型结果。批量块选择的两种常见情况:整个训练集:选择整个训练集进行模型训练是最常见的情形。随机训练集:代表性方法就是随机梯度下降(SGD),

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计算,而批量块大小的选择同时会影响收敛速度和模型结果。批量块选择的两种常见情况:整个训练集:选择整个训练集进行模型训练是最常见的情形。随机训练集:代表性方法就是随机梯度下降(SGD),

    作者: 运气男孩
    1443
    5
  • 《智能系统与技术丛书 深度学习实践:基于Caffe的解析》—3.3.4训练log解析

    3.3.4 训练log解析 Caffe已经做好了对日志的解析以及查阅,我们只需要在训练过程中添加下面的步骤即可。 1. 记录训练日志 向训练过程中的命令加入一行参数(如下代码中使用双线包围的一行),将log日志放入固定的文件夹内:TOOLS=./build/toolsGLOG_logtostderr=0

    作者: 华章计算机
    发表时间: 2019-06-02 16:23:44
    5089
    0
  • 利用深度强化学习优化钻井过程

    控制钻井液的密度,影响井壁稳定性 通过调整这些关键参数,深度强化学习可以根据地层特征和钻井目标来优化钻井过程,提高钻井效率和质量。 深度强化学习的训 练过程 深度强化学习训练过程通常分为离线训练和在线优化两个阶段。在离线训练阶段,我们可以利用历史钻井数据来训练深度强化学习模型。通过建立状态、动作和奖励

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 17:08:33
    5
    0
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1251
    2
  • modelarts的学习率适中和过大是如何判断的呢?

    modelarts的学习率适中和过大是如何判断的呢?是不同的项目的 判断标准不一样的吗? 还是有一个通用的标准的呢? 这个对我们最后训练得到的模型有什么影响的吗?比如     学习力               相对应有什么的模型影响的不?     适中     过大    有过小不?  

    作者: andyleung
    1154
    2
  • 机器学习常识(三):训练数据拆分

    训练测试拆分是一个模型验证过程,它揭示了你的模型在新数据上的表现。监督学习的一个目标是建立一个在新数据上表现良好的模型。如果你有新数据,最好查看模型在其上的表现。问题是您可能没有新数据,但你可以通过训练测试拆分等过程模拟。 什么是训练测试拆分? 训练测试拆分是一

    作者: 川川菜鸟
    发表时间: 2022-08-19 15:57:36
    120
    0
  • 如何在MindSpore中使用预训练模型进行迁移学习

    callbacks=callbacks) 步骤6:训练和微调模型 使用准备好的数据集、损失函数和优化器,以及修改过的网络模型,开始训练和微调模型。可以使用MindSpore提供的训练函数来执行训练过程。在训练过程中,首先冻结预训练的层进行训练,然后逐渐解冻更多的层来微调模型。 pythonCopy

    作者: 皮牙子抓饭
    发表时间: 2023-12-20 09:26:08
    15
    0
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    813
    2
  • Mindinsight训练优化过程可视化

    unit: 表示训练过程中保存参数的间隔单位,分为epoch/step。使用step时,须在model.train中设置dataset_sink_model=False。默认为step。 create_landscape: 表示绘制地形图的方式,目前支持训练过程地形图(带训练轨迹)与训

    作者: 孙小北
    发表时间: 2022-05-30 15:17:22
    415
    0
  • 深度学习进阶篇-预训练模型1:预训练分词Subword、ELMo、Transformer模型原理;结构;技巧以及应用详解

    深度学习进阶篇-预训练模型[1]:预训练分词Subword、ELMo、Transformer模型原理;结构;技巧以及应用详解 从字面上看,预训练模型(pre-training model)是先通过一批语料进行训练模型,然后在这个初步训练好的模型基础上,再继续训练或者另作他用。这

    作者: 汀丶
    发表时间: 2023-05-24 10:42:54
    9
    0
  • 学习笔记|EM算法的收敛

    很自然地要问:EM算法得到的估计序列是否收敛?如果收敛,是否收敛到全局最大值或局部极大值?下面给出关于EM算法收敛性的两个定理。 证明: 由于 取对数有 (可参见学习笔记|EM算法介绍及EM算法的导出及其在无监督学习中的应用) 令 于是对数似然函数可以写成

    作者: darkpard
    发表时间: 2021-12-22 12:03:25
    853
    0
  • 如何使用PyTorch训练LLM

    实例分配给变量训练器。 trainer.train():根据提供的规范触发模型的训练过程。 结论 本文提供了使用 PyTorch 训练大型语言模型的明确指南。从数据集准备开始,它演练了准备先决条件、设置训练器以及最后运行训练过程的步骤。 尽管它使用了特定的数据集和预先训练的模型,但

    作者: yd_217961358
    发表时间: 2023-09-08 21:57:46
    13
    0
  • 深度学习算法优化油田水处理过程

    深度学习算法优化油田水处理过程 油田水处理是在石油开采过程中至关重要的一环。传统的处理方法往往依赖于经验和规则,但这些方法可能无法处理复杂的水质变化和高水量的情况。利用深度学习算法,我们可以通过对大量数据的学习和模式识别来优化油田水处理过程,提高效率和水质。 数据收集与准备

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 19:10:04
    5
    0
  • 深度学习应用开发》学习笔记-13

    值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0.05下一步定义损失函数,用

    作者: 黄生
    456
    0
  • 深度学习之推断

    在Bagging的情况下,每一个模型在其相应训练集上训练收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好

    作者: 小强鼓掌
    426
    4
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    955
    4
  • 分享优秀 AI 论文——收敛一致性可能解释不了深度学习中的泛化现象

    explain generalization in deep learning收敛一致性可能解释不了深度学习中的泛化现象推荐理由:为了探究深度学习泛化能力背后的原理,学术界提出了泛化边界的概念,然后尝试用「收敛一致性」理论推导、设计出了各种各样的泛化边界描述方法,似乎已经取得了不少成

    作者: 初学者7000
    1268
    2