已找到以下 10000 条记录
  • 训练过程的理解

    训练过程中,通常不是对每个样本单独更新参数,而是对一个批次(batch)的样本进行操作。批次(Batch):在实际的训练过程中,通常会将数据集分成多个小批次,每个批次包含多个样本。这样做可以提高内存利用率和计算效率,并且有助于模型学习到更一般化的特征。一个批次的损失计算和优化:

    作者: 黄生
    20
    0
  • 如何调整训练参数,使模型效果最优 - 盘古大模型 PanguLargeModels

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

  • 【模型训练】字体识别数据集在训练时不收敛的问题

    【问题现象】做手写体识别时,按照流程进行数据集的制作和训练,发现训练几轮后,完全没有收敛的迹象。loss值基本不变。【解决过程】因为模型可以正常进行训练,但是loss不收敛,所以对训练的参数进行调整,发现依然没有收敛的迹象。先排除训练脚本的错误。因为使用这个脚本可以正常的产出模型,只

    作者: zhangxin
    846
    0
  • 训练文本分类模型 - AI开发平台ModelArts

    时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类

  • 使用PyTorch解决多分类问题:构建、训练和评估深度学习模型

    当处理多分类问题时,PyTorch是一种非常有用的深度学习框架。在这篇博客中,我们将讨论如何使用PyTorch来解决多分类问题。我们将介绍多分类问题的基本概念,构建一个简单的多分类神经网络模型,并演示如何准备数据、训练模型和评估结果。 🍋什么是多分类问题? 多分类问题是一种机器学习任务,其中目标是将输入

    作者: 小馒头学Python
    发表时间: 2023-11-05 10:34:02
    175
    0
  • 创建训练服务 - 网络智能体

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

  • 训练过程出错

    【功能模块】【操作步骤&问题现象】1、请问上面那个报错是什么原因?看这个报错我不能确定是哪部分出了问题,然后无从下手。求知道的大佬们帮帮忙,万分感谢~备注说明:数据是自定义的【截图信息】【日志信息】(可选,上传日志内容或者附件)[ERROR] PARSER(861664,pyth

    作者: loyolh
    2247
    9
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2441
    1
  • 指定GPU运行和训练python程序 、深度学习单卡、多卡 训练GPU设置【一文读懂】

    此次博文内容难以 以偏概全,如有不恰当的地方,欢迎评论区批评指正 对于即将入行计算机视觉的小伙伴,墨理这里推荐收藏的干货博文目前如下 ❤️ 深度学习模型训练基础环境搭建相关教程————认真帮大家整理了 🚀🚀 墨理学AI 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿

    作者: 墨理学AI
    发表时间: 2022-01-09 06:31:22
    1451
    0
  • SwinIR实战:详细记录SwinIR的训练过程

    net/article/details/124517210 在写这边文章之前,我已经翻译了论文,讲解了如何使用SWinIR进行测试? 接下来,我们讲讲如何SwinIR完成训练,有于作者训练了很多任务,我只复现其中的一种任务。 下载训练代码 地址:https://github.com/cszn/KAIR 这是

    作者: AI浩
    发表时间: 2022-08-03 07:14:47
    705
    0
  • 初识 torch.Autograd:理解pytorch网络训练过程

    损失函数衡量得到的结果与目标值的不相似程度,是我们在训练过程中想要最小化的损失函数。 为了计算损失,我们使用给定数据样本的输入进行预测,并将其与真实数据标签值进行比较。 Optimizer 【 优化器】 优化是在每个训练步骤中调整模型参数以减少模型误差的过程。 优化算法定义了这个过程如何执行的(在这个例子中我们使用随机梯度下降)。

    作者: 墨理学AI
    发表时间: 2022-02-23 11:12:58
    879
    0
  • Python学习之For训练

    for i in range(5): print(i) print('range 5 test

    作者: 指剑
    发表时间: 2022-09-02 14:55:57
    101
    0
  • 深度学习之TensorFlow入门、原理与进阶实战》—3.2 模型是如何训练出来的

    3.2 模型是如何训练出来的  在上面的例子中仅仅迭代了20次就得到了一个可以拟合y≈2x的模型。下面来具体了解一下模型是如何得来的。3.2.1 模型里的内容及意义  一个标准的模型结构分为输入、中间节点、输出三大部分,而如何让这三个部分连通起来学习规则并可以进行计算,则是框架T

    作者: 华章计算机
    发表时间: 2019-05-31 13:58:40
    3142
    0
  • 模型训练 - 可信智能计算服务 TICS

    模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模

  • 分享论文——收敛一致性可能解释不了深度学习中的泛化现象

    收敛一致性可能解释不了深度学习中的泛化现象推荐理由:为了探究深度学习泛化能力背后的原理,学术界提出了泛化边界的概念,然后尝试用「收敛一致性」理论推导、设计出了各种各样的泛化边界描述方法,似乎已经取得了不少成果。但这篇论文中作者们通过大量实验发现,虽然其中的许多泛化边界从数值角度看

    作者: 初学者7000
    979
    0
  • 深度学习应用开发学习

    件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习和强化学习等概念。特别是强化学习,它通过奖励和惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它在日常生活中的广泛应用,比如超市货架的商品

    作者: 黄生
    22
    0
  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 训练过程中无法找到so文件 - AI开发平台ModelArts

    编译生成so文件的cuda版本与训练作业的cuda版本不一致。 处理方法 编译环境的cuda版本与训练环境不一致,训练作业运行就会报错。例如:使用cuda版本为10的开发环境tf-1.13中编译生成的so包,在cuda版本为9.0训练环境中tf-1.12训练会报该错。 编译环境和训练环境的cuda版本不一致时,可参考如下处理方法:

  • 机器学习深度学习

    这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。4、解决问题的方法机器学习算法遵循标准

    作者: QGS
    678
    2
  • 【MindSpore】【语音识别】DFCNN网络训练loss不收敛

    的)月月阳绿底林盎景盎的然意......因为我使用keras的那个脚本,是可以训练收敛的,想知道是哪里对不上了。使用的环境:由于P.CTCGreedyDecoder只支持Ascend,脚本要在Ascend上执行。如果不推理只训练,可以用GPU。mindspore版本1.0以上好像都可以。我还有几个建议1

    作者: Daniel46010140
    1740
    3