检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
学习率可通过试验和误差来选取,通常最好的选择方法是监测目标函数值随时间变化的学习曲线。与其说是科学,这更像是一门艺术,我们应该谨慎地参考关于这个问题的大部分指导。使用线性策略时,需要选择的参数为 ϵ0,ϵτ,τ。通常 τ 被设为需要反复遍历训练集几百次的迭代次数。通常 ϵτ 应设为大约
在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习任务,例如聚类,将数据集分成相似样本的集合。
因为大多数深度学习框架的基础数据结构都参考了NumPy中的array,比如MXNet框架中的NDArray、TensorFlow和PyTorch框架中的Tensor等。那么既然有NumPy array,为什么不直接在框架中使用这种数据结构呢?
回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯度下降等
为了使前馈网络的想法更加具体,我们首先从前馈网络充分发挥作用的一个简单例子说起:学习 XOR 函数。 XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为
PyTorch于2017年年初开源,虽然比其他大部分深度学习框架开源时间要晚,但快速发展的PyTorch目前拥有较为完善的接口和文档,在众多深度学习框架中已经是出类拔萃、深受追捧。
经过几年的发展壮大,完善的生态为TensorFlow积累了越来越多的用户,这对于一个深度学习框架而言非常重要。
深度学习的现实应用近年来掀起的深度学习革命已经深刻地改变了诸多应用领域,并将在越来越多的领域取得成功。
深度神经网络:深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络
深度学习的进步也严重依赖于软件基础架构的进展。
什么是神经网络 我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。 假设你有一个数据集,它包含了六栋房子的信息。
到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融等)也有很多应用。在生物学研究中,深度学习算法可以发现人类无法捕捉到的特征。
有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;
在目前基于深度学习的语言模型结构主要包括三个类别:基于RNN的语言模型,基于CNN的语言模型和基于Transformer的语言模型。接下来我会对它们进行依次介绍,并且逐一分析他们的优缺点。
图 1.4: 维恩图展示了深度学习是一种表示学习,也是一种机器学习,可以用于许多(但不是全部) AI方法。
深度学习的核心是构建多层的神经网络,而卷积神经网络(CNN)的发展,尤其是AlexNet在2012年的突破,让我对深度学习的强大能力有了更深的认识。在学习过程中,我也了解到了不同的深度学习开发框架,包括Theano、Caffe、Torch、PyTorch以及Keras等。
欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待
深度学习对语音识别产生了巨大影响。语音识别在 20 世纪 90 年代得到提高后,直到约 2000 年都停滞不前。
深度学习框架有哪些?各有什么优势?
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。