已找到以下 10000 条记录
  • 分享深度学习领域这些年取得经典成果(2)

    出色结果。这也提升了研究人员扩展深度强化学习技术信心,有望借鉴这个成果来解决包括围棋、Dota 2、Starcraft 2等等更复杂任务。Atari游戏之后也成为了强化学习研究标准基准。早期深度强化学习方法仅超过人类基本水平、学会7款游戏,但在后来几年时间里,基于这

    作者: 初学者7000
    744
    2
  • 深度学习应用开发》学习笔记-02

    灵相关三次浪潮就是三个时代,三盘棋。分别是1962年国际跳棋,1997年国际象棋,以及2016年围棋。从这个难易程度也可以看出,围棋是最强调系统性思维,所以 AI想要战胜人类也是最难。第一讲到这里就结束了,第二讲看了一点,其中关于人工智能机器学习概念,除了公式定义之外,用类比的方法讲的非常的简单易懂

    作者: 黄生
    1353
    3
  • 深度学习应用开发》学习笔记-13

    先定义训练数据占位符,定义了2个,1个是特征值x,1个是标签值y然后定义模型函数,这个函数有3个参数,1个就是上面说x,还有2个是参数,分别是w和b,就是2个参数斜率和位移而上面的2个参数,要用tf.Variable来声明来创建变量,它是会变训练中学习,所以给它初值是多

    作者: 黄生
    457
    0
  • 深度学习应用开发》学习笔记-12

    数据不是收集,是自己生成,好吧~一个简单例子学习没关系%matplotlib inline这个是为了让jupyter浏览器里能够显示图像。生成y=2x+1随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1

    作者: 黄生
    1024
    2
  • 分享深度学习领域这些年取得经典成果(3)

    采用“注意力”编码器-解码器网络    深度学习最卓越成就大多体现在与视觉相关任务中,并且由卷积神经网络驱动。虽然NLP研究已使用LSTM网络和编码器-解码器架构语言建模和翻译方面取得了一定成功,但该领域也是直到注意力机制出现才开始取得令人瞩目的成就。处理语言时,每个

    作者: 初学者7000
    656
    0
  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习基本手段,必须要掌握。 所以后面有线性代数、矩阵运算基本介绍。 标量是一个特殊向量(行向量、列向量),向量是一个特殊矩阵;这样说来,标量,也是一个特殊矩阵,一行一列矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1038
    2
  • 深度学习应用开发》学习笔记-09

    n阶张量/n维数组流,表示张量数据流动/计算过程。每一个张量有一个唯一类型,运算类型不匹配会报错,比如int和float32运算就不行,这个是比较严格,可以先通过tf.cast()做类型转换常量定义时候是可以按需求做类型自动转换、reshape但是变量定义中,类型还是根据初值来定,而设定需求类型并没有生效:v2=tf

    作者: 黄生
    1746
    3
  • 深度学习应用开发》学习笔记-08

    后者比较死板,因为门槛高而被初学者所诟病。这个有点像敏捷和瀑布式开发区别。原来1.x课件会保留,因为有助于底层原理理解,而2.0课件也会更新。这样处理非常好,与时俱进,很负责任。并且建议先看2.0编程基础那一节。

    作者: 黄生
    1134
    3
  • 【Linux学习教程】1.11 Linux主要应用领域有哪些?

    也是一个操作系统软件。但与Windows不同是,Linux是一套开放源代码程序,并可以自由传播类UNIX操作系统软件,随着信息技术更新变化,Linux应用领域已趋于广泛。 1、IT服务器Linux系统应用领域 如今IT服务器领域是Linux、UNIX、Windows三分

    作者: 开源Linux
    发表时间: 2022-04-30 15:00:42
    524
    0
  • 探索Python金融投资领域应用:从入门到精通

    函式:执行特定任务代码块,可以重复调用。Python金融投资领域应用是多方面的,从数据获取到策略执行,Python提供了一整套解决方案。对于希望进入量化交易领域投资者来说,掌握Python是一项宝贵技能。随着技术不断进步,Python金融领域应用将会更加广泛和深入

    作者: yd_269990119
    195
    3
  • 分享深度学习领域这些年取得经典成果(3)

    采用“注意力”编码器-解码器网络    深度学习最卓越成就大多体现在与视觉相关任务中,并且由卷积神经网络驱动。虽然NLP研究已使用LSTM网络和编码器-解码器架构语言建模和翻译方面取得了一定成功,但该领域也是直到注意力机制出现才开始取得令人瞩目的成就。处理语言时,每个

    作者: 初学者7000
    942
    3
  • 深度学习应用开发》学习笔记-14

    izer()然后开始迭代训练,训练内容,是每次将样本逐个输入模型,进行梯度下降优化操作。这里为了演示,每轮迭代后绘制出模型曲线(这里有点不清楚地方,是将样本输入模型?还是训练得到了模型?我觉得是前者,训练得到只是参数值,模型不是训练出来)训练代码:for xs,ys in

    作者: 黄生
    626
    2
  • 深度学习应用开发》学习笔记-28

    这个房价预测例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程一些信息进行可视化。可视化是一件有意见工作,有助于信息理解和推广。可视化modelarts老版训练作业下,是收费,但这个服务新版训练作业里已经没有了,也行是因为这个可视化服务使用不

    作者: 黄生
    840
    3
  • 深度学习应用开发》学习笔记-29

    房价tf2版本,有一些变化。 1是直接使用sklearn.preprocessing里scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散操作 代码如下: 最

    作者: 黄生
    770
    3
  • 医学图像处理:医学领域创新应用

    模型评估与部署 使用独立测试集对模型进行评估,确保其未见过数据上泛化性能。将训练好模型部署到医学系统中,以实现对特定疾病辅助诊断。 IV. 未来发展趋势 1. 强化学习医学图像处理中应用 随着强化学习不断发展,其医学图像处理中应用将更加广泛。通过强化学习, 系统可

    作者: Y-StarryDreamer
    发表时间: 2024-02-29 11:18:37
    7
    0
  • 深度学习应用开发》学习笔记-25

    特征值最小者)/(特征值最大值 - 特征值最小者) 这样归一化后值,范围在 [0,1]之间。 标签值是不需要做归一化哦 放一下有修改代码,以及训练结果: ```python #做归一化,对列index是0到11特征值做归一化 #列index是12是标签值,不需要做归一化哦 for i in

    作者: 黄生
    857
    3
  • 深度学习应用开发》学习笔记-30

    MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。 notebook里试试: ```python %matplotlib

    作者: 黄生
    527
    0
  • 深度学习应用开发》学习笔记-23

    从人角度来看,12个特征比1个特征要复杂了很多, 但对计算机来说,无所谓。 tf里,12元线性回归方程实现,比1元线性方程实现,代码上也只是多了一点点复杂度而已。 这就是计算机优势。 只是最后训练结果,为什么都是nan,像老师说,脸都黑了哦~ 这次先到这里,请听下回分解~

    作者: 黄生
    1471
    4
  • 分享深度学习领域这些年取得经典成果 (6)

    riminator)进行一前一后训练。判别器经过训练来分辨真实图像和生成图像,而生成器目标就是生成一些能够骗过判别器样本。随着训练深入,判别器识别伪造物体能力会提高,但生成器也会越来越狡猾,并渐渐生成看起来更逼真的样本。第一代GAN生成图像分辨率低,模糊不清,并且训练

    作者: 初学者7000
    1050
    3
  • 深度学习应用开发》学习笔记-20

    pandas用来处理文件很方便,shuffle就是洗牌,我们打牌,一局结束后需要洗牌后再开始下一局 这里介绍了pandas库,处理常规大小数据文件,会很方便,基于BSD协议库。 可以自动转换为numpy多维数组。 下面是代码 ```python %matplotlib notebook

    作者: 黄生
    934
    3
提示

您即将访问非华为云网站,请注意账号财产安全