已找到以下 10000 条记录
  • 基于深度学习的红肉新鲜过期判决系统matlab仿真

    耗力等缺点。近年来,深度学习技术的迅猛发展,为红肉新鲜度的自动化、智能化检测提供了新的解决方案。          基于深度学习的红肉新鲜过期判决系统,通过采集红肉样本的图像数据,利用深度学习算法对图像进行特征

    作者: 简简单单做算法
    发表时间: 2024-03-03 12:26:34
    44
    0
  • 浅谈强化学习基本模型和原理

    强化学习是从动物学习、参数扰动自适应控制等理论发展而来,其基本原理是:如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强。Agent的目标是在每个离散状态发现最优策略以使期望的折扣奖赏和最大。强化学习强化学习把学习看作试探评

    作者: QGS
    35
    2
  • 华为云,助力他们“深度用云”

    化释放数字生产力。 “深度用云”让云计算价值进一步释放 虽然说,在云端实现“深度用云”理念,是政企数字化发展的必经之路。但是,在真正实践的过程中,面对的困难往往让云平台公司与政企共同“望而却步”。具体来看,政企深度用云主要面临三大挑战: 首先,技术难用。深度用云往往包含了基础设施

  • 概要 - CodeArts IDE Online

    模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • AI系统创新Lab_News_【论文笔记】语音情感识别之手工特征深度学习方法

    绑定邮箱 温馨提示 请您在新打开的页面绑定邮箱! 注意: 绑定邮箱完成前,请不要关闭此窗口! 已完成绑定 【论文笔记】语音情感识别之手工特征深度学习方法 本文章主体基于PilgrimHui的论文笔记:《语音情感识别(三)手工特征+CRNN》,在原来基础上,补充了数据处理部分以及论文

  • 深度学习识别滑动验证码

    本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂,本节也不会从零开始编写代码,而是倾向于把代码提前下载下来进行实操练习。

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0
  • 适合新手的深度学习综述(4)--深度学习方法

    等人 (2015) 预测了无监督学习在深度学习中的未来。Schmidthuber(2014) 也描述了无监督学习的神经网络。Deng 和 Yu(2014) 简要介绍了无监督学习的深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型的下一步。这主

    作者: @Wu
    176
    1
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2441
    1
  • 深度用云先锋对话直播间

    深度用云先锋对话直播间 深度用云先锋对话直播间 马上登录,观看直播 已有华为云账号,即刻登录 还未注册华为云,即刻注册 马上登录,观看回放 已有华为云账号,即刻登录 还未注册华为云,即刻注册 直播正在恢复,请稍后重试 华为云Stack 部署在政企客户本地数据中心的云基础设施,助力

  • 分享IMPALA:大规模强化学习算法

    论文名称:Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures作者:Lasse Espeholt / Hubert Soyer / Remi Munos / Karen Simonyan

    作者: 初学者7000
    1362
    4
  • 强化学习(十五) A3C

     在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化。而Asynchronous Advantage Actor-criti

    作者: 格图洛书
    发表时间: 2021-12-29 16:15:54
    346
    0
  • 【3月16日 AI 快讯】UC伯克利最新深度学习课程上线,强化学习大牛Sergey Levine授课(B站可看)

    入门重磅预告 | 自动化所强化学习与运筹优化前沿技术论坛即将起航!自动化所强化学习与运筹优化前沿技术论坛即将起航!2021/03/15 18:56原文链接产业看日本农民用智慧农业技术都做了什么日本作为现代化农业技术的代表国家,在智慧农业领域颇有投入。由于日本是岛国,土地资源不足、

    作者: AI资讯
    1644
    2
  • MATLAB实现屏幕截屏的代码

    function screen_capture(movie_name,recording_time) %Can be used to record any screen activity and output

    作者: 格图洛书
    发表时间: 2021-12-29 16:52:55
    623
    0
  • 强化学习(十三) 策略梯度(Policy Gradient)

    Gradient),它是Policy Based强化学习方法,基于策略来学习。     本文参考了Sutton的强化学习书第13章和策略梯度的论文。 1. Value Based强化学习方法的不足     DQN系列强化学习算法主要的问题主要有三点。     第一点

    作者: 格图洛书
    发表时间: 2021-12-29 15:59:35
    417
    0
  • 深度学习:主流框架和编程实战》——2.3.4 详细代码解析(2)

    #将数据data重塑为(数据数目,图像高度*图像宽度,图像深度) data = data.reshape((num_data, IMG_HEIGHT * IMG_WIDTH, IMG_DEPTH), order='F') #将数据data重塑为(数据数目,图像高度,图像宽度,图像深度) data = data.reshape((num_data

    作者: 华章计算机
    发表时间: 2019-06-05 16:52:23
    3247
    0
  • 强化学习算法中Q-learning

    强化学习是一种机器学习方法,用于训练智能体在与环境交互的过程中学习最佳行动策略。Q-learning是强化学习中的一种基于值函数的算法,用于解决马尔科夫决策问题。 Q-learning的核心思想是通过学习一个状态-动作值函数(Q函数),来指导智能体在环境中选择最佳的行动。Q函数

    作者: 皮牙子抓饭
    发表时间: 2023-08-29 09:12:09
    5
    0
  • OpenAI Gym 中级教程——深入强化学习算法

    中级教程:深入强化学习算法 OpenAI Gym 是一个用于开发和比较强化学习算法的工具包,提供了多个环境,包括经典的控制问题和 Atari 游戏。本篇博客将深入介绍 OpenAI Gym 中的强化学习算法,包括深度 Q 网络(Deep Q Network, DQN)和深度确定性策略梯度(Deep

    作者: Echo_Wish
    发表时间: 2024-01-29 08:45:50
    14
    0
  • 强化学习第一课复习

    智能体不能得到即时的反馈,所以很困难。 1-3 强化学习的基本特征有哪些? (1)强化学习会试错探索,它通过探索环境来获取对环境的理解。 (2)强化学习智能体会从环境里面获得延迟的奖励。 (3)在强化学习的训练过程中,时间非常重要。因为我们得到的是有时间关联的数据(sequential

    作者: livingbody
    发表时间: 2022-11-15 08:36:03
    186
    0
  • 深度学习计算服务平台

    深度学习计算服务平台是中科弘云面向有定制化AI需求的行业用户,推出的AI开发平台,提供从样本标注、模型训练、模型部署的一站式AI开发能力,帮助用户快速训练和部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本的开发工具与框架,例如AI数据集、AI模型与算力等。

  • AI市场强化学习预置算法实践----使用强化学习训练智能体玩转Atari小游戏(2)

    在上一篇实践教程中,我们结合ModelArts平台的最佳实践文档,使用AI市场的强化学习预置算法,完成了玩Atari小游戏Breakout的智能体的训练。训练好的模型及配置文件在自己的OBS文件夹内,具体要怎么“欣赏”我们训练的智能体玩游戏呢?实际上,这是一个推理并可视化的过程。

    作者: 灰灰爱喝粥
    发表时间: 2020-09-12 18:33:02
    8575
    0