检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
片自动分类并进行结构化识别。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。 上传图片后,右侧会显示模板识别结果,包括“模板ID”、“模板名”、“置信度”。
“字段类型”指待识别文字的内容,您可以在默认字段类型中选择,当前可选择的默认字段类型包括“姓名”、“数字”、“常规”、“电话号码”、“地址”、“金额”、“长数字”、“长字段”,每个识别区可选择多个字段类型。 如果“默认字段类型”不能满足您的业务需求,您可以在字段类型下拉框单击“创建新字段类型”,创建新字段类型。
在“应用开发>评估”页面,单击“在线URL”,切换至“在线URL”页签。 图3 上传在线图片 在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域。 单击“开始识别”,右侧会显示识别结果。 如果不正确,可单击“创建新模板”,重新创建一个模板,或者单击“上一步”,对当前模板进行修改。
“字段类型”指待识别文字的内容,您可以在默认字段类型中选择,当前可选择的默认字段类型包括“姓名”、“数字”、“常规”、“电话号码”、“地址”、“金额”、“长数字”、“长字段”,每个识别区可选择多个字段类型。 如果“默认字段类型”不能满足您的业务需求,您可以在字段类型下拉框单击“创建新字段类型”,创建新字段类型。
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
工作流介绍 工作流简介 功能介绍 支持用户自定义多个文字识别模板,通过模型训练,自动识别图片所需使用的模板,从而支持从大量不同板式图像中提取结构化信息。 适用场景 用户认证识别 识别证件中关键信息,节省人工录入,提升效率,降低用户实名认证成本,准确快速便捷。 快递单自动填写 识别
上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件
使用多模板工作流开发应用 ModelArts Pro的文字识别套件提供了多模板工作流,通过工作流指引支持自定义多个文字识别模板,通过模型训练,自动识别图片所属模板,从而支持从大量不同板式图像中提取结构化信息。 本章节提供一个票证类型的样例,帮助您快速熟悉使用文字识别套件中的多模板
编辑应用 对于已经创建的模板应用,您可以修改模板的配置信息以匹配业务变化。 前提条件 已存在创建的模板应用。 编辑模板配置信息 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。 在“我的应用”页签下,选择应用并单击“操作”列的“查看”。
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
行业套件介绍 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件的介绍请参见产品介绍。 预置工作流 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别
HiLens套件(使用HiLens安全帽检测技能开发可训练技能) ModelArts Pro的HiLens套件提供了安全帽检测技能,通过工作流指引支持自主上传数据集,零代码构建安全帽检测技能,并一键下发到端侧设备HiLens Kit;针对难例数据,可快速迭代更新技能,提升精度。
功能总览 功能总览 全部 ModelArts Pro 资源池 工作流 应用管理 文字识别套件 自然语言处理套件 视觉套件 HiLens套件 共享带宽 共享流量包 带宽加油包 VPC对等连接 VPC对等连接 VPC对等连接 VPC对等连接 VPC对等连接 VPC对等连接 VPC对等连接
上传数据集失败如何处理? 问题原因 上传数据集失败,一般是因为数据集格式不对导致的。不同行业套件的工作流,对数据集要求也不同。 首先请检查数据集是否符合要求,各个套件的数据集要求如下: 文字识别套件 自然语言处理套件 视觉套件 HiLens套件 确认数据集符合要求后,将数据集上传至OBS桶。