检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
录密码,通过已验证手机或已验证邮箱进行验证,输入对应的验证码,如图4所示。 图4 新增访问密钥 单击“确定”,根据浏览器提示,保存密钥文件。密钥文件会直接保存到浏览器默认的下载文件夹中。打开名称为“credentials.csv”的文件,即可查看访问密钥(Access Key Id和Secret
使用限制 在使用RES时,需注意以下使用限制。 建议使用支持的浏览器登录RES服务。 Google Chrome : 43.0及更高版本。 Mozilla FireFox : 38.0及更高版本。 Internet Explorer : 9.0及更高版本。 推荐系统属于高并发低时延场景,建议使用私有网络获取推荐结果。
避免物品重复推荐(曝光过滤) 本实践介绍用户在客户端浏览、点击过的某些商品,在规定的时间内,重复请求推荐接口,不会被再次推荐。 功能说明 该功能使用涉及两部分:实时行为数据的接入和在线服务配置行为过滤。当数据源部分开启近线行为实时接入之后,并且用户通过上传实时行为数据,系统才具备
例如,用户当前的设备id,ip地址等信息。 否 subSite String 行为发生的位置ID,比如,在首页推荐里面点击,在详情页里面浏览。 否 traceId String 用于追踪每个被推荐物品的唯一ID。用于推荐效果的计算。 否 flowId String 用于计算每一
创建智能场景 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。
猜你喜欢的主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景
例如,用户当前的设备id,ip地址等信息。 否 subSite String 行为发生的位置ID。例如,在首页推荐里面点击,在详情页里面浏览。 否 traceId String 用于追踪每个被推荐物品的唯一ID。用于效果的计算。 否 flowId String 用于计算每一个在
consume:消费 use:观看视频/听音乐/阅读。 物品曝光 行为次数统计方法 统计物品记录数的方式。 pv:page view,即页面浏览量或点击量。 uv:unique visitor,即同一个访客只记录一条数据。 默认pv 排序算法类型 物品热度是否随着时间衰减。 不衰减:normal。
独立的基于CTR预估的排序打分模块,支持个性化排序能力。 如何访问RES 您可以通过以下任何一种方式访问RES。 管理控制台 管理控制台是基于浏览器的可视化界面。通过管理控制台,您可以使用直观的界面进行相应的操作。使用方式请参见《推荐系统用户指南》。 REST API RES提供RE
构造请求 本节介绍REST API请求的组成,并以调用IAM服务的获取用户Token接口说明如何调用API,该API获取用户的Token,Token可以用于调用其他API时鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987
服务器成功处理了部分GET请求。 300 Multiple Choices 多种选择。请求的资源可包括多个位置,相应可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302
配置过期时间实现新闻的过期下架 在新闻推荐等对物料的时效性要求较高的场景,可配置物料的过期时间expireTime,设置每一条新闻的有效期,使新闻在有效期内实现可推送,超过有效期,不会被推送。 表1 物品数据中expireTime字段描述 字段名 类型 描述 是否必选 expireTime
图3 单击新增访问密钥 填写该密钥的描述说明,单击“确定”。根据提示单击“立即下载”,下载密钥。 图4 新增访问密钥 密钥文件会直接保存到浏览器默认的下载文件夹中。打开名称为“credentials.csv”的文件,即可查看访问密钥(Access Key Id和Secret Access
Mozilla、Google都为REST提供了图形化的浏览器插件,发送处理请求消息。 此处以Postman为例,指导您如何通过调用预测接口获取推荐结果。更多接口信息请参见《推荐系统API参考》。 下载Postman软件并安装,您也可以直接在Chrome浏览器添加Postman扩展程序(也可使用其它支持发送post请求的软件)。
单击目标服务名称进入服务详情页面,通过单击预测接口右侧的,复制接口地址,调用服务。 图3 获取预测接口 调用接口 Mozilla、Google都为REST提供了图形化的浏览器插件,发送处理请求消息。 预测接口的调用和接口参数请参见预测接口,更多接口信息请参见《推荐系统API参考》。 父主题: 在线服务
Mozilla、Google都为REST提供了图形化的浏览器插件,发送处理请求消息。 此处以Postman为例,指导您如何通过调用预测接口获取推荐结果。更多接口信息请参见《推荐系统API参考》。 下载Postman软件并安装,您也可以直接在Chrome浏览器添加Postman扩展程序(也可使用其它支持发送post请求的软件)。
排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算
置来完成在线的推荐结果过滤。 “行为过滤”:配置“时间区间”为“3”,“行为类型”选择“物品曝光”即为在线服务生成的结果会过滤近三天内用户浏览过的物品,可以提高结果集的丰富度,尤其是在短视频领域,达到推荐的视频列表不包含近期看过的视频,避免重复推送。 图7 添加在线流程 步骤4:发布自定义场景
“基于用户推荐物品”:某些用户的属性很相似,如电商平台根据这些用户的行为(浏览、点击、购买)计算与这些用户相似用户的行为,为该用户推荐相似用户浏览或购买的物品。 “基于用户推荐用户”:某些用户的属性很相似,如交友平台根据这些用户的行为(浏览、点击)或属性推荐与这些用户相似用户。 “基于物品推荐物品
排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM