检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。 上
在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“上传测试图片”右侧单击“选择文件”,上传本地的测试图片,下侧会显示预测结果。 查看历史版本 在“应用监控”页面,您可以查看当前应用所部署的不同版本信息,包括“更新时间”、“更新状态”、“对应应用版本”、“分流(%)”、“计算节点规格”和“计算节点个数”。
在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“请输入文本”下方输入测试文本,然后单击“测试”,右侧会显示预测结果。 图3 在线测试 查看历史版本 在“应用监控”页面,您可以查看当前应用所部署的不同版本信息,包括“更新时间”、“更新状态”、“对应应用版本”、“分流(%)”、“计算节点规格”和“计算节点个数”。
本地上传图片 图2 评估模板 在“应用开发>评估”页面,默认进入“本地上传”页签。 单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 测试图片上传成功后,右侧会显示识别结果。 您可以核对识别结果是否正确。 如果不正确,可单击“创建新模板”,重新创
在“模型评估”页面,您可以查看测试集中数据模型预测结果。 “详细评估”左侧显示标注标签,右侧显示第二相交并比指标较低的图片。 图2 详细评估 模拟在线测试 在“模型评估”页面,您可以在线测试当前模型,即通过上传测试图片,查看当前模型的预测结果。 待服务构建完成,单击“上传图片”,上传本地一张测试图片,即可查看当前模型版本的预测结果。
Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并训练模型,详情请见训练模型。 评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图2 评估参数对比
新建训练数据集后,勾选当前应用开发所需的训练数据集。 由于该工作流所需数据集需标注10%数据量用于测试,其余90%无需标注。针对已上传的数据集,您可以手动添加或修改标签。 单击数据集操作列的“标注测试图片”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 导入数据集
图片,然后对多个模板图片进行文字识别和结构化提取。 训练分类器 评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别刹车盘的类型,也可以直接调用对应的API和SDK识别。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于检测和识别车牌,也可以直接调用对应的API和SDK识别。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别云状的类型,也可以直接调用对应的API和SDK识别。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别图像的类别,也可以直接调用对应的API和SDK识别。
选择“所属行业”和“选择工作流”。 图3 工作流配置 资源配置 图4 资源配置 分别选择“数据处理资源”、“模型训练资源”、“测试资源部署”,即用于数据处理、模型训练和在线测试的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。
在“应用开发>模型评估”页面,可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估。 模型评估 图6 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图7 评估参数对比 左侧是各个标签数据的精确率、召回率、F1值。勾选标
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别热轧钢板表面图片中的
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、交并比等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于为给定的金相图像测定第二
为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数据量的10%,用于测试模型,其余90%无需标注。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别自己所上传的商品图片
刹车盘识别工作流”等。 图4 工作流配置 资源配置 图5 资源配置 分别选择“数据处理资源”、“模型训练资源”、“测试资源部署”,即用于数据处理、模型训练和在线测试的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。
显示“恭喜您,已发布成功”。 图1 部署模板 发布模板后,在“应用开发>部署”页面,您可以进行如下操作。 “评估”:单击“评估”,继续上传测试图片评估模板。 “继续编辑”:单击“继续编辑”,返回“应用开发>上传模板图片”页面,重新创建模板。 “返回列表”:单击“返回列表”,返回至应用详情页。