检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
us字段一样,都可以通过实时数据推送方式,进行字段的更新。该字段为非必选,如不传入,则不会进行失效处理。 示例: 配置新闻在上架五天后进行自动下架。 物品JSON数据: { "itemId": "item1", "itemType": "sport", "category":
作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中每一个属性的数据格式、统计所有行为,然后保存解析生成的数据格式。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。
index_region_num 否 Integer 索引表预分区个数。只有特种工程中,初始用户画像-物品画像-标准宽表生成算子需要使用索引表预分区个数,其他离线算子因为不生成索引表不需要此参数。 示例 请求示例 { "job_name": "yyn-test", "job_description":
数据,生成画像和宽表。 确认完成单击“执行”,待状态为“已完成”时,生成推荐系统内部通用的画像和宽表数据。 执行完成在页面下方会生成数据相关报告。 “数据导入报告”,显示数据“类型”、“总条目数”、“合法条目数”、“非法条目数”、“重复度”和“合法率”信息。 类型包括生成的用户、
设置手机号、短信验证码、账号名、密码并勾选“我已阅读并同意《华为云用户协议》和《隐私政策声明》”,单击“同意协议并注册”。 页面提示注册成功后,系统会自动跳转至您的个人信息界面。 参考实名认证完成个人或企业帐号实名认证。 父主题: 准备工作
“推荐候选集”:选择步骤3配置的召回策略生成的召回结果集“hot-recall-DIREC”。 “过滤”:非必选,此样例进行黑名单过滤配置来完成在线的推荐结果过滤。 “行为过滤”:配置“时间区间”为“3”,“行为类型”选择“物品曝光”即为在线服务生成的结果会过滤近三天内用户浏览过的物品
推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景
解绑”。只有已绑定状态的服务资源支持“解绑”。 在弹出的确认对话框中,单击“确定”完成资源解绑。 已创建的作业和服务不会因为资源解绑影响计算和推荐结果。 直接解绑DLI,不会自动删除创建的DLI跨源连接。您需要在DLI管理控制台进行操作。 解绑资源不会删除对应的集群和数据,您需要去服务对应的管理控制台进行删除。 父主题:
离线计算逻辑,通过启动离线计算任务进行候选推荐结果集的生成。 各个召回策略的详细介绍请参见: 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐 业务规则-基于历史行为记忆生成候选集 业务规则-人工导入 基于特征匹配的召回策略 基于UCB的召回策略
rank_conf参数说明 参数名称 是否必选 参数类型 说明 model_path 否 String 排序策略生成的模型在obs的文件路径。 etl_uuid 否 String 特征工程中生成排序训练样本生成的uuid。 is_attrWeight_rank 否 Boolean 是否配置属性排序。 表10
数据路径选择完成后单击“立即创建”。 离线数据源创建完成后,在数据源列表页面单击目标数据源名称进行数据质量管理,具体操作请参见推荐系统用户指南>数据源质量管理,完成数据探索并生成数据质量报告,此步骤完成后创建的数据源才可用。 步骤3:创建智能场景 登录RES管理控制台,在左侧导航栏中选择“推荐业务>智能场景”,默认进入“智能场景”列表。
击设置数据参数。 通用格式 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 默认选择初始格式 时间选择 时间选择包括数据时间和行为时间跨度。
ItemCF 基于用户的协同过滤推荐 UserCF 基于交替最小二乘的矩阵分解推荐 AlsCF 基于历史行为记忆生成候选集 HistoryBehaviorMemory 人工录入生成候选集 ManualInput sorting 逻辑斯蒂回归 LR 因子分解机 FM 域感知因子分解机 FFM
推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。 获取推荐结果 根据不同的功能模块,获取对应的推荐结果。 获取推荐结果
预测接口(排序) 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是
于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合
提交流式训练作业 功能介绍 该接口用于提交流式训练作业。 URI POST /v1/{project_id}/stream-etl-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离。获取方法请参见获取项目ID。
“个数比例”:个数比例是将全部数据按个数比例随机划分成训练集和测试集传入值。取值RAMDOM。 训练数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 开启调度 开启调度,按照指定的调度策略定期执行作业。
RES支持哪些自定义策略? 重新运行被在线服务所引用的召回策略,是否需要重新部署在线服务? 在线服务获得推荐的调用次数如何计算? 自定义场景关闭后,为什么会自动启动?
召回策略通过大数据计算或深度训练生成推荐候选集。 召回策略 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、历史行为过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 过滤规则 特征工程 特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。